Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid deactivation

The foregoing review of the alkylation mechanism and the influence of the catalyst type and reaction conditions show that, in essence, the chemistry is identical with all the examined acid catalysts, liquid and solid. Differences in the importance of individual reaction steps originate from the variety of possible structures and distributions of acid sites of solid catalysts. Changing process parameters induces similar effects with each of the catalysts however, the sensitivity to a particular parameter depends strongly on the catalyst. All the acids deactivate by the formation of unsaturated polymers, which are strongly bound to the acid. [Pg.311]

Para-Substituted Benzoic Acid, Deactivation Groups K Value a... [Pg.195]

The acid deactivation mechanism in hydrocarbon media is supplementary to the neutralizing action of carbonate-surfactant hard-core RMs. Traces of strong sulfur, nitrogen or halogen acids are scavenged by neutral detergents, with the... [Pg.87]

A more powerful and versatile thallating agent is Tl(III) trifluoroacetate - . Reaction of Tl(III) trifluoroacetate with substrates activated toward electrophilic substitution is complete within a few minutes at RT. Thallation of deactivated substrates, such as halobenzenes, requires longer times at RT (48 h) or 30 min at reflux (73°C for trifluoro-acetic acid). Deactivated compounds such as benzoic acid or a,a,a-trifluorotoluene are thallated after 21 and 98 h, respectively. [Pg.312]

N,N-Bis (2-ethylhexyl)-ar-methyl-1 H-benzotriazole-1-methanamine deactivator, heavy metal Carboxymethyl mercaptosuccinic acid deactivator, metal... [Pg.5051]

The digestion and metabolism of carbohydrates is a complex biochemical process. It starts in the mouth, where the enzyme amylase in the saliva begins the hydrolysis of starch to maltose and temporarily stops in the stomach, where hydrochloric acid deactivates the enzyme. Digestion continues in the intestines, where the hydrochloric acid is neutralized and pancreatic enzymes complete the hydrolysis to maltose. The enzyme maltase then catalyzes the digestion of maltose to glucose ... [Pg.513]

Ketones from carboxylic acids Deactivation hy nitro groups Prevention of intramolecular ring closure... [Pg.493]

The activation of ester prodmgs via the action of esterases is described above and in various other chapters, e.g. Chapter 5 and Chapter 22. Esterases are also employed to inactivate dmgs or to prepare them for phase II conjugation. For example, the local anaesthetic lidocaine is rapidly hydrolysed to p-aminobenzoic acid deactivating it (Fig. 8.35). The closely related antianythmic compound procainamide is not readily hydrolysed and its major deactivated metah-olite is desethyl procainamide (Fig. 8.35), although much of the dmg is excreted unchanged. Hydrolysis of esters occurs much more readily than the hydrolysis of amides... [Pg.169]

We found a way to overcome charge-charge repulsion when activating the nitronium ion when Tewis acids were used instead of strong Bronsted acids. The Friedel-Crafts nitration of deactivated aromatics and some aliphatic hydrocarbons was efficiently carried out with the NO2CI/3AICI3 system. In this case, the nitronium ion is coordinated to AICI3. [Pg.200]

In other systems the nitronium ion is also effective with deactivated substrates (such as nitrobenzene in 80% sulphuric acid). [Pg.71]

There are certain limitations to the usefulness of nitration in aqueous sulphuric acid. Because of the behaviour of the rate profile for benzene, comparisons should strictly be made below 68% sulphuric acid ( 2.5 fig. 2.5) rates relative to benzene vary in the range 68-80% sulphuric acid, and at the higher end of this range are not entirely measures of relative reactivity. For deactivated compounds this limitation is not very important, but for activated compounds it is linked with a fundamental limit to the significance of the concept of aromatic reactivity as already discussed ( 2.5), nitration in sulphuric acid cannot differentiate amongst compounds not less than about 38 times more reactive than benzene. At this point differentiation disappears because reactions occur at the encounter rate. [Pg.124]

For deactivated compounds this limitation does not exist, and nitration in sulphuric acid is an excellent method for comparing the reactivities of such compounds. For these, however, there remains the practical difficulty of following slow reactions and the possibility that with such reactions secondary processes might become important. With deactivated compounds, comparisons of reactivities can be made using nitration in concentrated sulphuric acid such comparisons are not accurate because of the behaviour of rate profiles at high acidities ( 2.3.2 figs. 2.1, 2.3). [Pg.124]

Kinetic data are available for the nitration of a series of p-alkylphenyl trimethylammonium ions over a range of acidities in sulphuric acid. - The following table shows how p-methyl and p-tert-h xty augment the reactivity of the position ortho to them. Comparison with table 9.1 shows how very much more powerfully both the methyl and the tert-butyl group assist substitution into these strongly deactivated cations than they do at the o-positions in toluene and ferf-butylbenzene. Analysis of these results, and comparison with those for chlorination and bromination, shows that even in these highly deactivated cations, as in the nitration of alkylbenzenes ( 9.1.1), the alkyl groups still release electrons in the inductive order. In view of the comparisons just... [Pg.185]

Table 9.7 contains recent data on the nitration of polychlorobenzenes in sulphuric acid. The data continue the development seen with the diehlorobenzenes. The introduetion of more substituents into these deactivated systems has a smaller effect than predicted. Whereas the -position in ehlorobenzene is four times less reactive than a position in benzene, the remaining position in pentachlorobenzene is about four times more reactive than a position in 1,3,4,5-tetraehlorobenzene. The chloro substituent thus activates nitration, a circumstance recalling the faet that o-chloronitrobenzene is more reactive than nitrobenzene. As can be seen from table 9.7, the additivity prineiple does not work very well with these compounds, underestimating the rate of reaction of pentachlorobenzene by a factor of nearly 250, though the failure is not so marked in the other cases, especially viewed in the circumstance of the wide range of reactivities covered. [Pg.189]

The nitration of some substituted nitrobenzenes has been studied in connection with the high o -ratios produced by [ —/ — A/] substituents. Thus nitration in sulphuric acid of 2,5-dialkyl-nitrobenzenes produces the isomer distributions shown below. As has been seen ( 9.1.3), one explanation for the occurrence of high o -ratios with [-/—A/] substituents is that the latter specifically deactivate para positions. In the... [Pg.189]

The nitration of nitro- and dinitro-biphenyls has been examined by several workers. i - As would be expected, nitration of the nitro-biphenyls occurs in the phenyl ring. Like a phenyl group, a nitrophenyl group is 0 -directing, but like certain substituents of the type CH CHA ( 9.1.6) it is, except in the case of w-nitrophenyl, deactivating. Partial rate factors for the nitration at o °C of biphenyl and the nitro-biphenyls with solutions prepared from nitric acid and acetic anhydride are given below. The high o p-v2X o found for nitration of biphenyl... [Pg.202]

The first quantitative studies of the nitration of quinoline, isoquinoline, and cinnoline were made by Dewar and Maitlis, who measured isomer proportions and also, by competition, the relative rates of nitration of quinoline and isoquinoline (1 24-5). Subsequently, extensive kinetic studies were reported for all three of these heterocycles and their methyl quaternary derivatives (table 10.3). The usual criteria established that over the range 77-99 % sulphuric acid at 25 °C quinoline reacts as its cation (i), and the same is true for isoquinoline in 71-84% sulphuric acid at 25 °C and 67-73 % sulphuric acid at 80 °C ( 8.2 tables 8.1, 8.3). Cinnoline reacts as the 2-cinnolinium cation (nia) in 76-83% sulphuric acid at 80 °C (see table 8.1). All of these cations are strongly deactivated. Approximate partial rate factors of /j = 9-ox io and /g = i-o X io have been estimated for isoquinolinium. The unproto-nated nitrogen atom of the 2-cinnolinium (ina) and 2-methylcinno-linium (iiiA) cations causes them to react 287 and 200 more slowly than the related 2-isoquinolinium (iia) and 2-methylisoquinolinium (iii)... [Pg.208]

A more detailed study of the nitration of quinolinium (l) in 80-05 % sulphuric acid at 25 °C, using isotopic dilution analysis, has shown that 3-) 5-) 6-, 7- and 8-nitroquinoline are formed (table 10.3). Combining these results with the kinetic ones, and assuming that no 2- and 4-nitration occurs, gives the partial rate factors listed in table 10.4. Isoquinolinium is 14 times more reactive than quinolinium. The strong deactivation of the 3-position is in accord with an estimated partial rate factor of io for hydrogen isotope exchange at the 3-position in the pyridinium ion. It has been estimated that the reactivity of this ion is at least 10 less than that of the quinolinium ion. Based on this estimate, the partial rate factor for 3-nitration of the pyridinium ion would be less than 5 x io . [Pg.212]

The conversion of carboxylic acid derivatives (halides, esters and lactones, tertiary amides and lactams, nitriles) into aldehydes can be achieved with bulky aluminum hydrides (e.g. DIBAL = diisobutylaluminum hydride, lithium trialkoxyalanates). Simple addition of three equivalents of an alcohol to LiAlH, in THF solution produces those deactivated and selective reagents, e.g. lithium triisopropoxyalanate, LiAlH(OPr )j (J. Malek, 1972). [Pg.96]

These acylating agents are the most commonly used (246). Acid chlorides react with 5-nitro-2-aminothiazoIe (88) despite the deactivating effect of the nitro group (Scheme 61) (247), but more vigorous conditions are required (248). [Pg.48]

Despite its V excessive character (340), thiazole, just as pyridine, is resistant to electrophilic substitution. In both cases the ring nitrogen deactivates the heterocyclic nucleus toward electrophilic attack. Moreover, most electrophilic substitutions, which are performed in acidic medium, involve the protonated form of thiazole or some quaternary thiazolium derivatives, whose reactivity toward electrophiles is still lower than that of the free base. [Pg.99]


See other pages where Acid deactivation is mentioned: [Pg.738]    [Pg.17]    [Pg.509]    [Pg.657]    [Pg.13]    [Pg.96]    [Pg.17]    [Pg.668]    [Pg.756]    [Pg.768]    [Pg.105]    [Pg.738]    [Pg.17]    [Pg.509]    [Pg.657]    [Pg.13]    [Pg.96]    [Pg.17]    [Pg.668]    [Pg.756]    [Pg.768]    [Pg.105]    [Pg.872]    [Pg.49]    [Pg.99]    [Pg.125]    [Pg.125]    [Pg.177]    [Pg.183]    [Pg.187]    [Pg.191]    [Pg.192]    [Pg.215]    [Pg.258]    [Pg.218]    [Pg.136]   
See also in sourсe #XX -- [ Pg.15 , Pg.88 ]




SEARCH



© 2024 chempedia.info