Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst PEMFCs

Zhou, S, Yuan, Z, Wang, S. Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts PEMFC applications. InL J. Hydrog Energy 2006 31 924-933. [Pg.363]

Principal design parameters of electro-catalysts for PEMFCs... [Pg.637]

Electro-catalysts which have various metal contents have been applied to the polymer electrolyte membrane fuel cell(PEMFC). For the PEMFCs, Pt based noble metals have been widely used. In case the pure hydrogen is supplied as anode fuel, the platinum only electrocatalysts show the best activity in PEMFC. But the severe activity degradation can occur even by ppm level CO containing fuels, i.e. hydrocarbon reformates[l-3]. To enhance the resistivity to the CO poison of electro-catalysts, various kinds of alloy catalysts have been suggested. Among them, Pt-Ru alloy catalyst has been considered one of the best catalyst in the aspect of CO tolerance[l-3]. [Pg.637]

For the support material of electro-catalysts in PEMFC, Vulcan XC72(Cabot) has been widely used. This carbon black has been successfully employed for the fuel cell applications for its good electric conductivity and high chemical/physical stability. But higher amount of active metals in the electro-catalysts, compared to the general purpose catalysts, make it difficult to control the metal size and the degree of distribution. This is mainly because of the restricted surface area of Vulcan XC72 carbon black. Thus complex and careM processes are necessary to get well dispersed fine active metal particles[4,5]. [Pg.637]

Fig. 1. Performance evaluation of prepared electro-catalysts as an electrode of PEMFC. Cell temperature 70 C, active area 50cm, platinum loading anode(0.3mgPt/cm )/cathode(0.45mg Pt/cm ), fuel utilization H2/O2 = 80%/50%, RH 100% RFl, pressure H2/O2 = 0 psig/0 psig. Fig. 1. Performance evaluation of prepared electro-catalysts as an electrode of PEMFC. Cell temperature 70 C, active area 50cm, platinum loading anode(0.3mgPt/cm )/cathode(0.45mg Pt/cm ), fuel utilization H2/O2 = 80%/50%, RH 100% RFl, pressure H2/O2 = 0 psig/0 psig.
Design parameters of the anode catalyst for the polymer electrolyte membrane fiiel cells were investigated in the aspect of active metal size and inter-metal distances. Various kinds of catalysts were prepared by using pretreated Ketjenblacks as support materials. The prepared electro-catalysts have the morphology such as the sizes of active metal are in the range from 2.0 to 2.8nm and the inter-metal distances are 5.0 to 14.2nm. The electro-catalysts were evaluated as an electrode of PEMFC. In Fig. 1, it looked as if there was a correlation between inter-metal distances and cell performance, i.e. the larger inter-metal distances are related to the inferior cell performance. [Pg.640]

Actually, various efforts have been made to develop the compact and efficient microchannel PrOx reactor for portable PEMFC applications. Goerke et al. [2] reported micro PrOx reactor employing stainless steel microchannel foil and Cu/Ce02 catalyst. They showed more than 99% CO conversion at less than 150 C and residence time of 14ms while CO selectivity was about 20%. Chen et al. [3] also developed microchannel reactor made of... [Pg.653]

In this study, we developed microchannel PrOx reactor to control CO outlet concentrations less than 10 ppm from methanol steam reformer for PEMFC applications. The reactor was developed based on our previous studies on methanol steam reformer [5] and the basic technologies on microchaimel reactor including design of microchaimel plate, fabrication process and catalyst coating method were applied to the present PrOx reactor. The fabricated PrOx reactor was tested and evaluated on its CO removal performance. [Pg.654]

A microchannel reactor for CO preferential oxidation was developed. The reactor was consisted of microchannel patterned stainless steel plates which were coated by R11/AI2O3 catalyst. The reactor completely removed 1% CO contained in the Ha-rich reformed gas and controlled CO outlet concentration less than Ippm at 130 200°C and 50,000h. However, CH4 was produced from 180"C and CO selectivity was about 50%. For high performance of present PrOx reactor, reaction temperature should be carefully and uniformly controlled to reach high CO conversion and selectivity, and low CH4 production. It seems that the present microchaimel reactor is promising as a CO removal reactor for PEMFC systems. [Pg.656]

Following a period of slack, decisive improvements were made after 1990 in the area of PEMFCs. Modem models now achieve specific powers of over 600 to 800 mW/cm while using less than 0.4 mg/cm of platinum catalysts and offering a service fife of several tens of thousands of hours. These advances were basically attained by the combination of two factors (1) using new proton-exchange membranes of the Nafion type, and (2) developing ways toward much more efficient utilization of the platinum catalysts in the electrodes. [Pg.364]

Significant (and even spectacular) results were contributed by the group of Norskov to the field of electrocatalysis [102-105]. Theoretical calculations led to the design of novel nanoparticulate anode catalysts for proton exchange membrane fuel cells (PEMFC) which are composed of trimetallic systems where which PtRu is alloyed with a third, non-noble metal such as Co, Ni, or W. Remarkably, the activity trends observed experimentally when using Pt-, PtRu-, PtRuNi-, and PtRuCo electrocatalysts corresponded exactly with the theoretical predictions (cf. Figure 5(a) and (b)) [102]. [Pg.25]

Neyerlin KC, Gu W, Jome J, Gasteiger HA. 2006. Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J Electrochem Soc 153 A1955-A1963. [Pg.30]

Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. 2005. Activity benchmark and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56 9-35. [Pg.556]

Au has recently received less attention than Pt as a supported catalyst because of its lower impact in PEMFC energy conversion technology, since the ORR is dominated by a two-electron reduction process, at what is a high overpotential, in acidic media. Nevertheless, it is an important oxygen reduction catalyst in alkaline media, and, in contrast to Pt, is oxide-free in the potential range where oxygen reduction occurs. [Pg.569]

The PEMFCs require expensive polymer membrane (e.g., Nation ), and operate at a low temperature (e.g., 80°C). Although low temperature reduced the cost of material, the heat generated at low temperatures is more difficult to remove. Alternate proton conducting membranes (e.g., inorganic polymer composites) that will operate at a high temperature (e.g., 200°C) are required. The expensive platinum catalyst used for electrochemical reactions can be poisoned by even trace amounts of carbon monoxide in the hydrogen fuel stream. Hence, a more tolerant catalyst material needs to be developed. [Pg.28]

PEMFC Polymer 80-110 60 High current and power densities, long operating life C02 intolerance, water management, noble catalyst Transportation, cogeneration... [Pg.300]

A typical problem to fuel cells operating at low temperatures comes from the catalyst, which can be damaged (or poisoned ) by the presence of CO or C02 and needs to be replaced AFC and PEMFC are rather intolerant to C02 and CO, while PAFC is moderately tolerant to CO and MCFC and SOFC are fully tolerant to CO. [Pg.301]

This survey focuses on recent developments in catalysts for phosphoric acid fuel cells (PAFC), proton-exchange membrane fuel cells (PEMFC), and the direct methanol fuel cell (DMFC). In PAFC, operating at 160-220°C, orthophosphoric acid is used as the electrolyte, the anode catalyst is Pt and the cathode can be a bimetallic system like Pt/Cr/Co. For this purpose, a bimetallic colloidal precursor of the composition Pt50Co30Cr20 (size 3.8 nm) was prepared by the co-reduction of the corresponding metal salts [184-186], From XRD analysis, the bimetallic particles were found alloyed in an ordered fct-structure. The elecbocatalytic performance in a standard half-cell was compared with an industrial standard catalyst (bimetallic crystallites of 5.7 nm size) manufactured by co-precipitation and subsequent annealing to 900°C. The advantage of the bimetallic colloid catalysts lies in its improved durability, which is essential for PAFC applicabons. After 22 h it was found that the potential had decayed by less than 10 mV [187],... [Pg.84]


See other pages where Catalyst PEMFCs is mentioned: [Pg.529]    [Pg.182]    [Pg.69]    [Pg.605]    [Pg.625]    [Pg.625]    [Pg.628]    [Pg.628]    [Pg.637]    [Pg.654]    [Pg.657]    [Pg.658]    [Pg.805]    [Pg.272]    [Pg.273]    [Pg.298]    [Pg.302]    [Pg.519]    [Pg.531]    [Pg.568]    [Pg.571]    [Pg.85]    [Pg.85]    [Pg.85]    [Pg.86]    [Pg.317]    [Pg.336]    [Pg.351]    [Pg.84]    [Pg.84]   
See also in sourсe #XX -- [ Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 ]




SEARCH



Anode catalyst PEMFC

Catalyst layer PEMFC

Membrane technology PEMFCs) catalysts

PEMFC

© 2024 chempedia.info