Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optimal Catalyst Layer

Overall, the theory of composition-dependent performance reproduces experimental findings [13,22,23,94,95] very well. In spite of the widely recognized importance of catalyst layer optimization, structural data are, however, still scarce in the open literature on fuel cells. [Pg.76]

It is noteworthy that the best results could be obtained only with very pure ionic liquids and by use of an optimized reactor set-up. The contents of halide ions and water in the ionic liquid were found to be crucial parameters, since both impurities poisoned the cationic catalyst. Furthermore, the catalytic results proved to be highly dependent on all modifications influencing mass transfer of ethylene into the ionic catalyst layer. A 150 ml autoclave stirred from the top with a special stirrer... [Pg.250]

Obviously, there are many good reasons to study ionic liquids as alternative solvents in transition metal-catalyzed reactions. Besides the engineering advantage of their nonvolatile natures, the investigation of new biphasic reactions with an ionic catalyst phase is of special interest. The possibility of adjusting solubility properties by different cation/anion combinations permits systematic optimization of the biphasic reaction (with regard, for example, to product selectivity). Attractive options to improve selectivity in multiphase reactions derive from the preferential solubility of only one reactant in the catalyst solvent or from the in situ extraction of reaction intermediates from the catalyst layer. Moreover, the application of an ionic liquid catalyst layer permits a biphasic reaction mode in many cases where this would not be possible with water or polar organic solvents (due to incompatibility with the catalyst or problems with substrate solubility, for example). [Pg.252]

The reactions are still most often carried out in batch and semi-batch reactors, which implies that time-dependent, dynamic models are required to obtain a realistic description of the process. Diffusion and reaction in porous catalyst layers play a central role. The ultimate goal of the modehng based on the principles of chemical reaction engineering is the intensification of the process by maximizing the yields and selectivities of the desired products and optimizing the conditions for mass transfer. [Pg.170]

Optimization of the catalyst layer composition and thickness in PEFCs for maximum catalyst utilization in operation on air and on impure hydrogen feed streams [Wilson, 1993 Springer et al., 1993]. [Pg.3]

Catalyst layer architecture As a consequence of the diminishing remrns from ever higher dispersion, the effort to increase the active catalyst surface area per unit mass of Pt has centered in recent years primarily on optimization of catalyst layer properties, aiming to maximize catalyst utilization in fuel cell electrodes based on Pt catalyst particle sizes of 2-5 nm. High catalyst utilization is conditioned on access to the largest possible percentage of the total catalyst surface area embedded in a catalyst... [Pg.4]

The most recent improvements in Pt catalyst utilization U by optimization of catalyst layer composition and stmcture have led to catalyst utilizations as high as 80%, or more, determined as the ratio between measured ORR current per geometric square centimeter of electrode area and the current expected from the total measured Pt surface area per geometric square centimeter of the electrode, i.e.,... [Pg.5]

The second approach is to test catalysts as layers in full MEA sfrucfures. This has the advantage of testing catalysts under realistic conditions and in realistic environments. However, this approach depends on creating a near-optimal catalyst layer structure that shows high utilization of fhe cafalysf, fogefher wifh a structure that allows adequate hydration and reactant/product transport. [Pg.14]

General Motors has assessed the required activity of a catalyst that costs less compared to the current state-of-the-art Pt activity based on these con-straints. i Assuming that the catalyst layer thickness could be increased to MOO pm from the currently used 10 pm, GM has calculated that the minimum volume activity (i.e., Acm ) for a cathode catalyst that costs less should be at least 10% of the current Pt activity. In reality, this seems rather generous, given the recent trend to reduce catalyst layer thicknesses to optimize high-current performances. The DoE has developed a series of volume activity targets for nonprecious metal catalysts, with the 10% of Pt activity target (300 Acm 3 at 0.8 V, H2/O2) necessary by 2015. [Pg.24]

The properties and composition of the CL in PEM fuel cells play a key role in determining the electrochemical reaction rate and power output of the system. Other factors, such as the preparation and treatment methods, can also affect catalyst layer performance. Therefore, optimization of the catalyst layer with respect to all these factors is a major goal in fuel cell development. For example, an optimal catalyst layer design is required to improve catalyst... [Pg.63]

In this chapter, we will focus on several imporfanf aspecfs of fhe PEM fuel cell catalyst layer, including the CL components and their corresponding fxmctions, the types of catalyst layers, and catalyst layer fabrication and optimization. [Pg.64]

Unfortunately, cell performance is not proportional to catalyst layer porosity. In order to achieve maximum fuel cell performance, the CL should have an optimal porosity [24]. With higher catalyst layer porosity, the mass transfer rate increases, while the electron and proton transport rates decrease. Gamburzev and Appleby [25] documented fuel cell performance with pore formers in the CL and found that optimum pore-former content was about 33%. [Pg.69]

Zhang and Shi [36] found that the dual-bound composite catalyst layer exhibited higher performance than either a PTFE-bound CL or a thin-film CL, as shown in Figure 2.9. Optimization of the dual-bound CL showed that impregnation of Nation between the two layers could lead to decreased cell performance [37]. Thus, the optimal structure for a dual-bound CL was a separate hydrophilic layer on top of a hydrophobic layer. [Pg.76]

Wang, Mukherjee, and Wang [124] investigated the effects of catalyst layer electrolyte and void phase fractions on fuel cell performance using a random microstructure. The model predicted volume fractions of 0.4 and 0.26 for void and electrolyte phases, respectively, as the optimal CL compositions. [Pg.93]

Jain, Biegler, and Jhon [126] optimized Pt distribution along the width of the CL and found that a significant improvement in current density could be obtained by placing higher amounts of Pt adjacent to the catalyst layer/membrane interface. [Pg.93]

The experimental optimization of Nafion ionomer loading within a catalyst layer has attracted widespread attention in the fuel cell community, mainly due to its critical role in dictating the reaction sites and mass transport of reactants and products [15,128-134]. Nafion ionomer is a key component in the CL, helping to increase the three-phase reaction sites and platinum utilization to retain moisture, as well as to prevent membrane dehydration, especially at low current densities. Optimal Nafion content in the electrode is necessary to achieve high performance. [Pg.93]

The microstructure of a catalyst layer is mainly determined by its composition and the fabrication method. Many attempts have been made to optimize pore size, pore distribution, and pore structure for better mass transport. Liu and Wang [141] found that a CL structure with a higher porosity near the GDL was beneficial for O2 transport and water removal. A CL with a stepwise porosity distribution, a higher porosity near the GDL, and a lower porosity near the membrane could perform better than one with a uniform porosity distribution. This pore structure led to better O2 distribution in the GL and extended the reaction zone toward the GDL side. The position of macropores also played an important role in proton conduction and oxygen transport within the CL, due to favorable proton and oxygen concentration conduction profiles. [Pg.95]

In order to make catalyst layers with high platinum utilization and better performance, we need to determine how various factors affect Pt utilization. Although this objective has been receiving more attention, we have not achieved a fundamental understanding of the relationships of composition, structure, effective properties, and fuel cell performance—a fact that may limit the optimal design and fabrication of CLs. [Pg.96]

Wang, G., Mukherjee, P P, and Wang, C. Y. Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling. Electrochimica Acta 2007 52 6367-6377. [Pg.104]


See other pages where Optimal Catalyst Layer is mentioned: [Pg.62]    [Pg.91]    [Pg.92]    [Pg.194]    [Pg.630]    [Pg.3102]    [Pg.62]    [Pg.91]    [Pg.92]    [Pg.194]    [Pg.630]    [Pg.3102]    [Pg.317]    [Pg.4]    [Pg.6]    [Pg.12]    [Pg.270]    [Pg.1416]    [Pg.62]    [Pg.62]    [Pg.62]    [Pg.70]    [Pg.92]    [Pg.92]    [Pg.92]    [Pg.94]    [Pg.94]    [Pg.95]    [Pg.95]    [Pg.96]    [Pg.96]    [Pg.104]   
See also in sourсe #XX -- [ Pg.349 ]




SEARCH



Catalyst layer

Catalyst layer, optimal DMFC anode

Catalyst layer, optimal PEFC cathode

Catalyst layer, optimal model

Catalyst layer, optimal optimization factor

Catalysts optimization

Optimal catalyst

Optimization layer

Optimization, catalyst layer composition

© 2024 chempedia.info