Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl Aluminum Catalyst

Low pressure polymerization via ionic catalysts, using Ziegler catalysts (aluminum alkyls and titanium haUdes). [Pg.432]

Polypropylene is made by polymerizing high-purity propylene gas recovered from cracked gas streams in olefin plants and oil refineries. The polymerization reaction is a low-pressure process that utilizes Ziegler-Natta catalysts (aluminum alkyls and titanium halides). The catalyst may be slumed in a hydrocarbon mixture to facihtate heat transfer. The reaction is carried out in batch or continuous reactors operating at temperatures between 50 and 80 C and pressure in the range of 5 to 25 atm. [Pg.426]

The aluminiun compoimd alkylates the transition metal and can act as a transfer agent. It also removes impurities from the reaction medium (eg, water, CO2, alcohols), thereby avoiding catalyst poisoning. In addition, aluminiun alkyl reduces the transition metal to lower valence, thus affecting its activity (210). In the case of supported catalysts, aluminum alkyl plays a fundamental role by complexing the electron donors (204). [Pg.6780]

Al—Ti Catalyst for cis-l,4-PoIyisoprene. Of the many catalysts that polymerize isoprene, four have attained commercial importance. One is a coordination catalyst based on an aluminum alkyl and a vanadium salt which produces /n j -l,4-polyisoprene. A second is a lithium alkyl which produces 90% i7j -l,4-polyisoprene. Very high (99%) i7j -l,4-polyisoprene is produced with coordination catalysts consisting of a combination of titanium tetrachloride, TiCl, plus a trialkyl aluminum, R Al, or a combination of TiCl with an alane (aluminum hydride derivative) (86—88). [Pg.467]

Uses. Magnesium alkyls are used as polymerization catalysts for alpha-alkenes and dienes, such as the polymerization of ethylene (qv), and in combination with aluminum alkyls and the transition-metal haUdes (16—18). Magnesium alkyls have been used in conjunction with other compounds in the polymerization of alkene oxides, alkene sulfides, acrylonitrile (qv), and polar vinyl monomers (19—22). Magnesium alkyls can be used as a Hquid detergents (23). Also, magnesium alkyls have been used as fuel additives and for the suppression of soot in combustion of residual furnace oil (24). [Pg.340]

The solvent is 28 CC-olefins recycled from the fractionation section. Effluent from the reactors includes product a-olefins, unreacted ethylene, aluminum alkyls of the same carbon number distribution as the product olefins, and polymer. The effluent is flashed to remove ethylene, filtered to remove polyethylene, and treated to reduce the aluminum alkyls in the stream. In the original plant operation, these aluminum alkyls were not removed, resulting in the formation of paraffins (- 1.4%) when the reactor effluent was treated with caustic to kill the catalyst. In the new plant, however, it is likely that these aluminum alkyls are transalkylated with ethylene by adding a catalyst such as 60 ppm of a nickel compound, eg, nickel octanoate (6). The new plant contains a caustic wash section and the product olefins still contain some paraffins ( 0.5%). After treatment with caustic, cmde olefins are sent to a water wash to remove sodium and aluminum salts. [Pg.439]

Idemitsu Process. Idemitsu built a 50 t x 10 per year plant at Chiba, Japan, which was commissioned in Febmary of 1989. In the Idemitsu process, ethylene is oligomerised at 120°C and 3.3 MPa (33 atm) for about one hour in the presence of a large amount of cyclohexane and a three-component catalyst. The cyclohexane comprises about 120% of the product olefin. The catalyst includes sirconium tetrachloride, an aluminum alkyl such as a mixture of ethylalurninumsesquichloride and triethyl aluminum, and a Lewis base such as thiophene or an alcohol such as methanol (qv). This catalyst combination appears to produce more polymer (- 2%) than catalysts used in other a-olefin processes. The catalyst content of the cmde product is about 0.1 wt %. The catalyst is killed by using weak ammonium hydroxide followed by a water wash. Ethylene and cyclohexane are recycled. Idemitsu s basic a-olefin process patent (9) indicates that linear a-olefin levels are as high as 96% at C g and close to 100% at and Cg. This is somewhat higher than those produced by other processes. [Pg.440]

Allyl Glycidyl Ether. This ether is used mainly as a raw material for silane coupling agents and epichlorohydrin mbber. Epichlorohydrin mbber is synthesized by polymerizing the epoxy group of epichlorohydrin, ethylene oxide, propylene oxide, and aHyl glycidyl ether, AGE, with an aluminum alkyl catalyst (36). This mbber has high cold-resistance. [Pg.77]

High Density Polyethylene. High density polyethylene (HDPE), 0.94—0.97 g/cm, is a thermoplastic prepared commercially by two catalytic methods. In one, coordination catalysts are prepared from an aluminum alkyl and titanium tetrachloride in heptane. The other method uses metal oxide catalysts supported on a carrier (see Catalysis). [Pg.327]

Zieglei-type catalysts based upon Co, Ni, and Fe and in the presence of aluminum alkyls codimeiize butadiene with olefins such as ethylene. [Pg.344]

Polyolefins. The most common polyolefin used to prepare composites is polypropylene [9003-07-0] a commodity polymer that has been in commercial production for almost 40 years following its controlled polymerisation by Natta in 1954 (5). Natta used a Ziegler catalyst (6) consisting of titanium tetrachloride and an aluminum alkyl to produce isotactic polypropylene directly from propylene ... [Pg.36]

Cumene as a pure chemical intermediate is produced in modified Friedel-Crafts reaction processes that use acidic catalysts to alkylate benzene with propylene (see Alkylation Friedel-CRAFTSreactions). The majority of cumene is manufactured with a soHd phosphoric acid catalyst (7). The remainder is made with aluminum chloride catalyst (8). [Pg.363]

The catalysts are primarily DCPD-soluble derivatives of tungsten and molybdenum and the activators are aluminum alkyls (63—64). Polymerization is accompHshed by mixing equal amounts of Hquid DCPD (at >32° C), one part of which contains the catalyst and the other of which contains the activator. The mixture is rapidly injected into a mold, where the polymerization takes place. Polymerization times are from under 30 seconds to several minutes, depending on the size of the part, mold temperature, and modifiers added to the polymerizate. [Pg.434]

Prepa.ra.tlon, There are several methods described in the Hterature using various cobalt catalysts to prepare syndiotactic polybutadiene (29—41). Many of these methods have been experimentally verified others, for example, soluble organoaluminum compounds with cobalt compounds, are difficult to reproduce (30). A cobalt compound coupled with triphenylphosphine aluminum alkyls water complex was reported byJapan Synthetic Rubber Co., Ltd. (fSR) to give a low melting point (T = 75-90° C), low crystallinity (20—30%) syndiotactic polybutadiene (32). This polymer is commercially available. [Pg.530]

Alkylation of aluminum with ethyleae yields products that fiad appHcatioa as iaitiators and starter compounds ia the productioa of a-olefias and linear primary alcohols, as polymerization catalysts, and ia the syathesis of some monomers like 1,4-hexadieae. Triethyl aluminum [97-93-8] A1(C2H3)2, is the most important of the ethylene-derived aluminum alkyls. [Pg.433]

In the production of a-olefins, ethylene reacts with an aluminum alkyl at relatively low temperature to produce a higher aLkylalumiaum. This is then subjected to a displacement reaction with ethylene at high temperatures to yield a mixture of a-olefins and triethylalumiaum. In an alternative process, both reactions are combiaed at high temperatures and pressures where triethylalumiaum fuactioas as a catalyst ia the polymerization process. [Pg.433]

The demand for aviation gasoline during World War II was so great that isobutanc from alkylation feedstock was insufficient. This deficiency was remedied by isomerization of abundant normal butane into isobutane using the isomerization catalyst aluminum chloride on alumina promoted by hydrogen chloride gas. [Pg.291]

Linear alcohols (C12-C26) are important chemicals for producing various compounds such as plasticizers, detergents, and solvents. The production of linear alcohols by the hydroformylation (Oxo reaction) of alpha olefins followed by hydrogenation is discussed in Chapter 5. They are also produced by the oligomerization of ethylene using aluminum alkyls (Ziegler catalysts). [Pg.207]

Catalysts developed in the titanium-aluminum alkyl family are highly reactive and stereoselective. Very small amounts of the catalyst are needed to achieve polymerization (one gram catalyst/300,000 grams polymer). Consequently, the catalyst entrained in the polymer is very small, and the catalyst removal step is eliminated in many new processes. Amoco has introduced a new gas-phase process called absolute gas-phase in which polymerization of olefins (ethylene, propylene) occurs in the total absence of inert solvents such as liquefied propylene in the reactor. Titanium residues resulting from the catalyst are less than 1 ppm, and aluminum residues are less than those from previous catalysts used in this application. [Pg.329]

Stereoregular polyisoprene is obtained when Zieglar-Natta catalysts or anionic initiators are used. The most important coordination catalyst is a-TiCls cocatalyzed with aluminum alkyls. The polymerization rate and cis... [Pg.354]

The most spectacular case of products arising from a catalyst invention is that of the stereospecific hydrocarbon polymers made possible by the Ziegler-Natta work on aluminum alkyl/transition metal halide combinations around 1950. Until these catalysts existed, polypropylene, polyiso-prene, and cis-polybutadiene could not be made, and linear polyethylene could not be made cheaply. For each of these products, very large investments were needed in big plants and in market development before they were competitive with the established, big thermoplastics and rubbers. Entrance fees ran into tens of millions of dollars. [Pg.237]

For this alcohol synthesis stoichiometric amounts of aluminum alkyls are required. Beside the wanted fatty alcohols high-purity aluminum oxide is formed. This aluminum oxide is of high value, e.g., for the production of catalysts and improves the economy of the Alfol process. [Pg.22]

The alkylation of benzene with ((w,a -dichloroalkyl)silanes was also studied in the presence of aluminum chloride catalyst. The alkylation gave diphenylated products, (w.w-diphenylalkyl)chlorosilanes in fair to good yields (Eq. (12)). [Pg.169]

Activation of the catalyst is usually performed by exposure to a co-catalyst, namely an aluminum alkyl. The model catalysts were successfully activated by trimethylalumimun (TMA) and triethylaluminum (TEA), commonly used for this purpose. The compounds were dosed from the gas phase either at room temperature for a prolonged time or for a much shorter time at a surface temperature of 40 K. Nominal 3400 L of TMA or TEA were exposed at room temperature. The chemical integrity of the co-catalyst was verified by IR spectroscopy of condensed films grown at low temperature on the substrates. The spectra were typical for condensed and matrix isolated species [119]. [Pg.137]


See other pages where Alkyl Aluminum Catalyst is mentioned: [Pg.227]    [Pg.604]    [Pg.94]    [Pg.137]    [Pg.227]    [Pg.604]    [Pg.94]    [Pg.137]    [Pg.483]    [Pg.399]    [Pg.411]    [Pg.412]    [Pg.437]    [Pg.95]    [Pg.128]    [Pg.478]    [Pg.372]    [Pg.530]    [Pg.534]    [Pg.534]    [Pg.238]    [Pg.160]    [Pg.87]    [Pg.87]    [Pg.180]    [Pg.170]    [Pg.72]    [Pg.4]    [Pg.291]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Alkyl catalysts

Alkylation catalysts

Aluminum alkyls

Aluminum catalysts

© 2024 chempedia.info