Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis stability

In principle, stereoselective aldol condensations can be carried out under two distinct sets of conditions. Under the influence of acid catalysis, stabilized enol derivatives of defined geometry (M = SiMea,... [Pg.4]

Metal ion catalysis Metal ions function in electrophihc catalysis stabilizing the negative charges that are formed. Metal-bonnd hydroxyl ions are potent nucleophiles (Strater et al 1996) that participate in reactions catalyzed by metalloen-zymes (Christianson and Cox, 1999) and ribozymes (Cech and Bass, 1986). [Pg.346]

One of my basic goals is to answer questions on stereoselectivity, catalysis, stability and reactivity of reactive intermediates, kinetic and thermodynamic aspects of chemical transformation, and so on. Many of the reactive intermediates of organic chemistry are charged species, such as carbocations (carbenium and carbonium ions) and carbanions, but there is an important subgroup of formally neutral... [Pg.13]

The components in catalysts called promoters lack significant catalytic activity tliemselves, but tliey improve a catalyst by making it more active, selective, or stable. A chemical promoter is used in minute amounts (e.g., parts per million) and affects tlie chemistry of tlie catalysis by influencing or being part of tlie catalytic sites. A textural (structural) promoter, on tlie otlier hand, is used in massive amounts and usually plays a role such as stabilization of tlie catalyst, for instance, by reducing tlie tendency of tlie porous material to collapse or sinter and lose internal surface area, which is a mechanism of deactivation. [Pg.2702]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

The free radicals initially formed are neutralized by the quinone stabilizers, temporarily delaying the cross-linking reaction between the styrene and the fumarate sites in the polyester polymer. This temporary induction period between catalysis and the change to a semisoHd gelatinous mass is referred to as gelation time and can be controUed precisely between 1—60 min by varying stabilizer and catalyst levels. [Pg.317]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

The bulk of 4-methylphenol is used in the production of phenoHc antioxidants. The alkylation of 4-methylphenol with isobutylene under acid catalysis yields 2-/ f2 -butyl-4-methylphenol [2409-55-4] and 2,6-di-/ f2 -butyl-4-methylphenol [128-37-0]. The former condenses with formaldehyde under acid catalysis to yield 2,2 -methylene bis(6-/ f2 -butyl-4-methylphenol) [119-47-1], which is widely used in the stabilization of natural and synthetic mbber (43). The reaction of 2-/ l -butyl-4-methylphenol with sulfur dichloride yields 2,2 -thiobis(6-/ l -butyl-4-methylphenol) [90-66-4]. [Pg.67]

A large number of hindered phenoHc antioxidants are based on the Michael addition of 2,6-di-/ f2 -butylphenol and methyl acrylate under basic catalysis to yield the hydrocinnamate which is a basic building block used in the production of octadecyl 3-(3,5-di-/ f2 butyl-4-hydroxyphenyl)propionate, [2082-79-3], tetrakis(methylene-3(3,5-di-/ f2 butyl-4-hydroxylphenyl)propionate)methane [6683-19-8], and many others (63,64). These hindered phenolic antioxidants are the most widely used primary stabilizers in the world and are used in polyolefins, synthetic and natural mbber, styrenics, vinyl polymers, and engineering resins. 2,6-Di-/ f2 -butylphenol is converted to a methylene isocyanate which is trimerized to a triazine derivative... [Pg.69]

Catalysis by Metals. Metals are among the most important and widely used industrial catalysts (69,70). They offer activities for a wide variety of reactions (Table 1). Atoms at the surfaces of bulk metals have reactivities and catalytic properties different from those of metals in metal complexes because they have different ligand surroundings. The surrounding bulk stabilizes surface metal atoms in a coordinatively unsaturated state that allows bonding of reactants. Thus metal surfaces offer an advantage over metal complexes, in which there is only restricted stabilization of coordinative... [Pg.175]

Many reactions catalyzed by the addition of simple metal ions involve chelation of the metal. The familiar autocatalysis of the oxidation of oxalate by permanganate results from the chelation of the oxalate and Mn (III) from the permanganate. Oxidation of ascorbic acid [50-81-7] C HgO, is catalyzed by copper (12). The stabilization of preparations containing ascorbic acid by the addition of a chelant appears to be negative catalysis of the oxidation but results from the sequestration of the copper. Many such inhibitions are the result of sequestration. Catalysis by chelation of metal ions with a reactant is usually accomphshed by polarization of the molecule, faciUtation of electron transfer by the metal, or orientation of reactants. [Pg.393]

Cobalt(II) oxalate [814-89-1], C0C2O4, is a pink to white crystalline material that absorbs moisture to form the dihydrate. It precipitates as the tetrahydrate on reaction of cobalt salt solutions and oxaUc acid or alkaline oxalates. The material is insoluble in water, but dissolves in acid, ammonium salt solutions, and ammonia solution. It is used in the production of cobalt powders for metallurgy and catalysis, and is a stabilizer for hydrogen cyanide. [Pg.377]

Catalysis is done by an acidic solution of the stabilized reaction product of stannous chloride and palladium chloride. Catalyst absorption is typically 1—5 p-g Pd per square centimeter. Other precious metals can be used, but they are not as cost-effective. The exact chemical identity of this catalyst has been a matter of considerable scientific interest (19—21,23). It seems to be a stabilized coUoid, co-deposited on the plastic with excess tin. The industry trends have been to use higher activity catalysts at lower concentrations and higher temperatures. Typical usage is 40—150 ppm of palladium at 60°C maximum, and a 30—60-fold or more excess of stannous chloride. Catalyst variations occasionally used include alkaline and non-noble metal catalysts. [Pg.110]

In this chapter we shall illustrate some fundamental aspects of enzyme catalysis using as an example the serine proteinases, a group of enzymes that hydrolyze peptide bonds in proteins. We also examine how the transition state is stabilized in this particular case. [Pg.205]

A structural anomaly in subtilisin has functional consequences Transition-state stabilization in subtilisin is dissected by protein engineering Catalysis occurs without a catalytic triad Substrate molecules provide catalytic groups in substrate-assisted catalysis Conclusion Selected readings... [Pg.416]


See other pages where Catalysis stability is mentioned: [Pg.304]    [Pg.33]    [Pg.63]    [Pg.138]    [Pg.303]    [Pg.1311]    [Pg.109]    [Pg.304]    [Pg.33]    [Pg.63]    [Pg.138]    [Pg.303]    [Pg.1311]    [Pg.109]    [Pg.2706]    [Pg.2782]    [Pg.2789]    [Pg.129]    [Pg.177]    [Pg.30]    [Pg.199]    [Pg.386]    [Pg.67]    [Pg.68]    [Pg.68]    [Pg.175]    [Pg.203]    [Pg.77]    [Pg.323]    [Pg.233]    [Pg.233]    [Pg.54]    [Pg.105]    [Pg.205]    [Pg.207]    [Pg.255]    [Pg.455]    [Pg.883]    [Pg.146]    [Pg.483]    [Pg.3]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Acid Catalysis and Prepolymer Stability (Shelf Life)

Active phase, catalysis carbon stabilization

Anions, stabilization, catalysis

Catalysis thermal stability

Cathode catalyses) stability

Cu-Pd alloy system structure, phase stability and catalysis

Enzymatic catalysis stabilization

Heterogeneous catalysis relative stability

Stability cobalt catalysis

Stability rhodium catalysis

Stabilization catalysis

Stabilization of metal clusters for catalysis

© 2024 chempedia.info