Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis proteases

Proteases are used in many industrial areas as well as basic research. They are classified by their mechanism of catalysis. Proteases are used in the pharmacological, food and other consumer industries to convert raw materials into a final product or to alter properties of the raw material. In biomedical research, proteases are used to study the structure of other proteins and for nthesis of peptides. The choice of a protease for an application depends in part on its specificity for peptide bonds, activity and stability. Technical advances in protein engineering have enabled alteration of these properties and allowed proteases to be used more effectively. Some easily obtained proteases can be modified so that they can substitute for proteases whose supply is limited. [Pg.62]

An example of a pseudoirreversible inhibitor has been demonstrated for chymotrypsin (36). This enzyme is a serine protease, and its mechanism of catalysis may be outlined as follows, where or R2 preferentially is a hydrophobic amino acid residue. [Pg.324]

Kraut, J. Serine proteases structure and mechanism of catalysis. Anna. Rev. Biochem. 46 331-358, 1977. [Pg.220]

James, M.N.G., et al. Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 A resolution. A model for serine protease catalysis. [Pg.220]

Sprang, S., et al. The three-dimensional structure of Asn ° mutant of trypsin role of Asp ° in serine protease catalysis. Science 237 905-909, 1987. [Pg.221]

Until recently, the catalytic role of Asp ° in trypsin and the other serine proteases had been surmised on the basis of its proximity to His in structures obtained from X-ray diffraction studies, but it had never been demonstrated with certainty in physical or chemical studies. As can be seen in Figure 16.17, Asp ° is buried at the active site and is normally inaccessible to chemical modifying reagents. In 1987, however, Charles Craik, William Rutter, and their colleagues used site-directed mutagenesis (see Chapter 13) to prepare a mutant trypsin with an asparagine in place of Asp °. This mutant trypsin possessed a hydrolytic activity with ester substrates only 1/10,000 that of native trypsin, demonstrating that Asp ° is indeed essential for catalysis and that its ability to immobilize and orient His is crucial to the function of the catalytic triad. [Pg.517]

FIGURE 16.29 (left) HIV-1 protease com-plexed with the inhibitor Crixivan (red) made by Merck. The flaps (residues 46-55 from each snbnnit) covering the active site are shown in green and the active site aspartate residues involved in catalysis are shown in white. [Pg.523]

FIGURE 7.2. Two alternative mechanisms for the catalytic reaction of serine proteases. Route a corresponds to the electrostatic catalysis mechanism while route b corresponds to the double proton transfer (or the charge relay mechanism), gs ts and ti denote ground state, transition state and tetrahedral intermediate, respectively. [Pg.174]

Catalysis, specific acid, 163 Catalytic triad, 171,173 Cavity radius, of solute, 48-49 Charge-relay mechanism, see Serine proteases, charge-relay mechanism Charging processes, in solutions, 82, 83 Chemical bonding, 1,14 Chemical bonds, see also Valence bond model... [Pg.230]

The requirements of protease inhibitors as drugs in terms of potency, pharmacokinetics, and toxicity will vary depending on the nature of the infection and the goals of therapy. At one extreme is treatment of HlV-1, a chroific infection that requires life-long therapy and full suppression of viral replication. At the other extreme is the treatment of human rhinovirus (i.e., the cold virus), where short-term treatment to blunt viremia will likely be sufficient to reduce the unwanted symptoms of a cold. In all cases, viral proteases represent very attractive targets with familiar mechanisms of catalysis that frequently allow for the design of transition state analogs and with distinct specificities from host proteases. [Pg.86]

The HIV-1 protease, like other retroviral proteases, is a homodimeric aspartyl protease (see Fig. 1). The active site is formed at the dimer interface, with the two aspartic acids located at the base of the active site. The enzymatic mechanism is thought to be a classic acid-base catalysis involving a water molecule and what is called a push-pull mechanism. The water molecule is thought to transfer a proton to the dyad of the carboxyl groups of the aspartic acids, and then a proton from the dyad is transferred to the peptide bond that is being cleaved. In this mechanism, a tetrahedral intermediate transiently exists, which is nonconvalent and which is mimicked in most of the currently used FDA approved inhibitors. [Pg.87]

Lipases are the enzymes for which a number of examples of a promiscuous activity have been reported. Thus, in addition to their original activity comprising hydrolysis of lipids and, generally, catalysis of the hydrolysis or formation of carboxylic esters [107], lipases have been found to catalyze not only the carbon-nitrogen bond hydrolysis/formation (in this case, acting as proteases) but also the carbon-carbon bond-forming reactions. The first example of a lipase-catalyzed Michael addition to 2-(trifluoromethyl)propenoic acid was described as early as in 1986 [108]. Michael addition of secondary amines to acrylonitrile is up to 100-fold faster in the presence of various preparations of the hpase from Candida antariica (CAL-B) than in the absence of a biocatalyst (Scheme 5.20) [109]. [Pg.113]

While catalysis by aspartic proteases involves the direct hydrolytic attack of water on a peptide bond, catalysis... [Pg.52]

Figure 7-6. Mechanism for catalysis by an aspartic protease such as HIV protease. Curved arrows Indicate directions of electron movement. Aspartate X acts as a base to activate a water molecule by abstracting a proton. The activated water molecule attacks the peptide bond, forming a transient tetrahedral Intermediate. Aspartate Y acts as an acid to facilitate breakdown of the tetrahedral intermediate and release of the split products by donating a proton to the newly formed amino group. Subsequent shuttling of the proton on Asp X to Asp Y restores the protease to its initial state. Figure 7-6. Mechanism for catalysis by an aspartic protease such as HIV protease. Curved arrows Indicate directions of electron movement. Aspartate X acts as a base to activate a water molecule by abstracting a proton. The activated water molecule attacks the peptide bond, forming a transient tetrahedral Intermediate. Aspartate Y acts as an acid to facilitate breakdown of the tetrahedral intermediate and release of the split products by donating a proton to the newly formed amino group. Subsequent shuttling of the proton on Asp X to Asp Y restores the protease to its initial state.
Catalysis by enzymes that proceeds via a unique reaction mechanism typically occurs when the transition state intermediate forms a covalent bond with the enzyme (covalent catalysis). The catalytic mechanism of the serine protease chymotrypsin (Figure 7-7) illustrates how an enzyme utilizes covalent catalysis to provide a unique reaction pathway. [Pg.63]

Prion diseases resulting in encephalopathy can be transmitted between individuals within species (more rarely between species) [26-28], A conformational variant of the normal cellular protein PrPs (PrPc) (protease-sensitive or cellular) is believed to catalyze [29] or nucleate [30-33] conversion to the pathological form, PrPR (protease-resistant). This highly unusual nongenetic mode of transmission of an infectious agent has been strongly debated [29]. The observation of multiple examples of nucleated catalysis of aberrant polymerization of protein subunits has... [Pg.251]

It is worth noting here that inhibitors that interact with enzyme active site functionalities in ways that mimic the structure of covalent intermediates of catalysis can bind with very high affinity. This was seen in Chapter 1 with the example of statine-and hydroxyethylene-based inhibitors of aspartic proteases other examples of this inhibitor design strategy will be seen in subsequent chapters of this text. [Pg.29]

The catalytic mechanism of the subtilisins is the same as that of the digestive enzymes trypsin and chymotrypsin as well as that of enzymes in the blood clotting cascade, reproduction and other mammalian enzymes. The enzymes are known as serine proteases due to the serine residue which is crucial for catalysis (Kraut, 1977 and Polgar, 1987)... [Pg.150]


See other pages where Catalysis proteases is mentioned: [Pg.154]    [Pg.154]    [Pg.203]    [Pg.520]    [Pg.40]    [Pg.330]    [Pg.204]    [Pg.19]    [Pg.52]    [Pg.52]    [Pg.54]    [Pg.63]    [Pg.222]    [Pg.71]    [Pg.73]    [Pg.29]    [Pg.34]    [Pg.39]    [Pg.75]    [Pg.91]    [Pg.166]    [Pg.107]    [Pg.263]    [Pg.26]    [Pg.225]    [Pg.323]    [Pg.115]    [Pg.333]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



Catalysis via Protease

Serine proteases catalysis

© 2024 chempedia.info