Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Irreversible catalysis

In a classic study on bovine pancreatic ribonuclease A at 90°C and pH conditions relevant for catalysis, irreversible deactivation behavior was found to be a function of pH (Zale, 1986) at pH 4, enzyme inactivation is caused mainly by hydrolysis of peptide bonds at aspartic acid residues as well as deamidation of asparagine and/or glutamine residues, whereas at pH 6-8, enzyme inactivation is caused mainly by thiol-disulfide interchange but also by fi-elimination of cystine residues, and deamidation of asparagine and/or glutamine residues. [Pg.502]

Elucidating Mechanisms for the Inhibition of Enzyme Catalysis An inhibitor interacts with an enzyme in a manner that decreases the enzyme s catalytic efficiency. Examples of inhibitors include some drugs and poisons. Irreversible inhibitors covalently bind to the enzyme s active site, producing a permanent loss in catalytic efficiency even when the inhibitor s concentration is decreased. Reversible inhibitors form noncovalent complexes with the enzyme, thereby causing a temporary de-... [Pg.638]

Carboxyhc acids react with aryl isocyanates, at elevated temperatures to yield anhydrides. The anhydrides subsequently evolve carbon dioxide to yield amines at elevated temperatures (70—72). The aromatic amines are further converted into amides by reaction with excess anhydride. Ortho diacids, such as phthahc acid [88-99-3J, react with aryl isocyanates to yield the corresponding A/-aryl phthalimides (73). Reactions with carboxyhc acids are irreversible and commercially used to prepare polyamides and polyimides, two classes of high performance polymers for high temperature appHcations where chemical resistance is important. Base catalysis is recommended to reduce the formation of substituted urea by-products (74). [Pg.452]

Affinity Labels. Active site-directed, irreversible inhibitors or affinity labels are usually substrate analogues that contain a reactive electrophilic functional group. In the first step, they bind to the active site of the target enzyme in a reversible fashion. Subsequentiy, an active site nucleophile in close proximity reacts with the electrophilic group on the substrate to form a covalent bond between the enzyme and the inhibitor, typically via S 2 alkylation or acylation. Affinity labels do not require activation by the catalysis of the enzyme, as in the case of a mechanism-based inhibitor. [Pg.323]

E. V. Albano. Irreversible saturation transitions in dimer-dimer reaction models of heterogeneous catalysis. J Phys A (Math Gen) 25 2557-2568, 1992 Corrigendum. J Phys A (Math Gen) 26.3661, 1993. [Pg.435]

Traces of bases such as methylimidazole in the final ionic liquid product can play an unfavorable role in some common applications of ionic liquids (such as bipha-sic catalysis). Many electrophilic catalyst complexes will coordinate the base in an irreversible manner and be deactivated. [Pg.25]

An interesting method, which also makes use of the concentration data of reaction components measured in the course of a complex reaction and which yields the values of relative rate constants, was worked out by Wei and Prater (28). It is an elegant procedure for solving the kinetics of systems with an arbitrary number of reversible first-order reactions the cases with some irreversible steps can be solved as well (28-30). Despite its sophisticated mathematical procedure, it does not require excessive experimental measurements. The use of this method in heterogeneous catalysis is restricted to the cases which can be transformed to a system of first-order reactions, e.g. when from the rate equations it is possible to factor out a function which is common to all the equations, so that first-order kinetics results. [Pg.6]

Proton Pump Inhibitors and Acid Pump Antagonists. Figure 2 Chemical mechanism of irreversible PPIs. PPIs are accumulated in acidic lumen and converted to active sulfenic acid and/or sulfenamide by acid catalysis. These active forms bind to extracytoplasmic cysteines of the gastric H.K-ATPase [3]. [Pg.1033]

An irreversible reaction of the intermediate of a redox reaction will greatly facilitate redox catalysis by thermodynamic control. A good example is the reduction of the carbon halogen bond where the irreversible reaction is the cleavage of the carbon halogen bond associated, or concerted, with the first electron transfer -pEe... [Pg.67]

The presence of redox catalysts in the electrode coatings is not essential in the c s cited alx)ve because the entrapped redox species are of sufficient quantity to provide redox conductivity. However, the presence of an additional redox catalyst may be useful to support redox conductivity or when specific chemical redox catalysis is used. An excellent example of the latter is an analytical electrode for the low level detection of alkylating agents using a vitamin 8,2 epoxy polymer on basal plane pyrolytic graphite The preconcentration step involves irreversible oxidative addition of R-X to the Co complex (see Scheme 8, Sect. 4.4). The detection by reductive voltammetry, in a two electron step, releases R that can be protonated in the medium. Simultaneously the original Co complex is restored and the electrode can be re-used. Reproducible relations between preconcentration times as well as R-X concentrations in the test solutions and voltammetric peak currents were established. The detection limit for methyl iodide is in the submicromolar range. [Pg.76]

The same framework of eight possible mechanisms that was discussed for ester hydrolysis can also be applied to amide hydrolysis. Both the acid- and base-catalyzed hydrolyses are essentially irreversible, since salts are formed in both cases. For basic catalysis the mechanism is Bac2-... [Pg.475]

Tyrosine. Phenylalanine hydroxylase converts phenylalanine to tyrosine (Figure 28-10). Provided that the diet contains adequate nutritionally essential phenylalanine, tyrosine is nutritionally nonessential. But since the reaction is irreversible, dietary tyrosine cannot replace phenylalanine. Catalysis by this mixed-function oxygenase incorporates one atom of O2 into phenylalanine and reduces the other atom to water. Reducing power, provided as tetrahydrobiopterin, derives ultimately from NADPH. [Pg.239]

In the classical world (and biochemistry textbooks), transition state theory has been used extensively to model enzyme catalysis. The basic premise of transition state theory is that the reaction converting reactants (e.g. A-H + B) to products (e.g. A + B-H) is treated as a two-step reaction over a static potential energy barrier (Figure 2.1). In Figure 2.1, [A - H B] is the transition state, which can interconvert reversibly with the reactants (A-H-l-B). However, formation of the products (A + B-H) from the transition state is an irreversible step. [Pg.26]

The half-wave potentials of (FTF4)Co2-mediated O2 reduction at pH 0-3 shifts by — 60 mV/pH [Durand et ah, 1983], which indicates that the turnover-determining part of the catalytic cycle contains a reversible electron transfer (ET) and a protonation, or two reversible ETs and two protonation steps. In contrast, if an irreversible ET step were present, the pH gradient would be 60/( + a) mV/pH, where n is the number of electrons transferred in redox equilibria prior to the irreversible ET and a is the transfer coefficient of the irreversible ET. The —60 mV/pH slope is identical to that manifested by simple Ee porphyrins (see Section 18.4.1). The turnover rate of ORR catalysis by (ETE4)Co2 was reported to be proportional to the bulk O2 concentration [Collman et ah, 1994], suggesting that the catalyst is not saturated with O2. [Pg.674]

Again returning to the diffusion-controlled limiting current, we often meet a considerable influence on its height by catalysis, adsorption or other surface phenomena, so that we have to deal with irreversible electrode processes. For instance, when to a polarographic system with a diffusion-controlled limiting... [Pg.143]

Fiirstner and coworkers developed a new Pt- and Au-catalyzed cycloisomerization of hydroxylated enynes 6/4-141 to give the bicylo[3.1.0]hexanone skeleton 6/4-143, which is found in a large number of terpenes [317]. It can be assumed that, in the case of the Pt-catalysis, a platinum carbene 6/4-142 is formed, which triggers an irreversible 1,2-hydrogen shift. The complexity of the product/substrate relationship can be increased by using a mixture of an alkynal and an allyl silane in the presence of PtCl2 to give 6/4-143 directly, in 55 % yield (Scheme 6/4.36). [Pg.480]

The preceding list of examples, which is by no means exhaustive, confirms that the determination of heats of adsorption is of both fundamental and practical importance. However, in contrast with this basic importance which cannot be overemphasised (9), data on heats of adsorption, and particularly on calorimetric heats of irreversible adsorption processes, are relatively incomplete, as the careful perusal of any textbook on adsorption or heterogeneous catalysis will show. [Pg.192]

In the presence of the indane aldehyde, additional somewhat irreversible waves are seen at ( wO.l V), which probably refer to some Ru(III) intermediates (10) involved in the catalysis. In the corresponding phenylacetaldehyde system, additional waves are seen at about -0.08 and +0.08 V. On adding nBuoP to the indane aldehyde system, waves are seen at 0.30 V [RuIII(TPP)(nBu3P)2 + e RuII(TPP)(nBu3P)2]> and M).90 V [due to the couple shown... [Pg.247]


See other pages where Irreversible catalysis is mentioned: [Pg.610]    [Pg.647]    [Pg.60]    [Pg.610]    [Pg.647]    [Pg.60]    [Pg.152]    [Pg.216]    [Pg.225]    [Pg.75]    [Pg.69]    [Pg.302]    [Pg.320]    [Pg.325]    [Pg.349]    [Pg.69]    [Pg.592]    [Pg.682]    [Pg.683]    [Pg.910]    [Pg.8]    [Pg.358]    [Pg.222]    [Pg.82]    [Pg.85]    [Pg.107]    [Pg.417]    [Pg.21]    [Pg.101]    [Pg.26]    [Pg.111]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



© 2024 chempedia.info