Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis, homogeneous acetic acid process

From the industrial point of view one of the major achievements of homogeneous catalysis has been the introduction of acetic acid processes via the carbonylation of methanol. These processes allow not only the use of methanol as a cheaper feedstock as compared to ethylene, but are also characterized by an extremely high selectivity. [Pg.3]

The original catalysts for this process were iodide-promoted cobalt catalysts, but high temperatures and high pressures (493 K and 48 MPa) were required to achieve yields of up to 60% (34,35). In contrast, the iodide-promoted, homogeneous rhodium catalyst operates at 448—468 K and pressures of 3 MPa. These conditions dramatically lower the specifications for pressure vessels. Yields of 99% acetic acid based on methanol are readily attained (see Acetic acid Catalysis). [Pg.51]

It is now nearly 40 years since the introduction by Monsanto of a rhodium-catalysed process for the production of acetic acid by carbonylation of methanol [1]. The so-called Monsanto process became the dominant method for manufacture of acetic acid and is one of the most successful examples of the commercial application of homogeneous catalysis. The rhodium-catalysed process was preceded by a cobalt-based system developed by BASF [2,3], which suffered from significantly lower selectivity and the necessity for much harsher conditions of temperature and pressure. Although the rhodium-catalysed system has much better activity and selectivity, the search has continued in recent years for new catalysts which improve efficiency even further. The strategies employed have involved either modifications to the rhodium-based system or the replacement of rhodium by another metal, in particular iridium. This chapter will describe some of the important recent advances in both rhodium- and iridium-catalysed methanol carbonylation. Particular emphasis will be placed on the fundamental organometallic chemistry and mechanistic understanding of these processes. [Pg.187]

Conversion of ethylene to acetaldehyde with a soluble palladium complex was one of the early applications of homogeneous catalysis. Traditionally, acetaldehyde was manufactured either by the hydration of acetylene or by the oxidation of ethanol. As most of the acetic acid manufacturing processes were based on acetaldehyde oxidation, the easy conversion of ethylene to acetaldehyde by the Wacker process was historically a significant discovery. With the... [Pg.172]

The synthesis of acetaldehyde by oxidation of ethylene, generally known as the Wacker process, was a major landmark in the application of homogeneous catalysis to industrial organic chemistry. It was also a major step in the displacement of acetylene (made from calcium carbide) as the feedstock for the manufacture of organic chemicals. Acetylene-based acetaldehyde was a major intermediate for production of acetic acid and butyraldehyde. However the cost was high because a large energy input is required to produce acetylene. The acetylene process still survives in a few East European countries and in Switzerland, where low cost acetylene is available. [Pg.65]

As in the original Monsanto process involving homogeneous catalysis and catalyst recycle, the product is removed as a liquid, because the gas phase of a stripping reactor would contain a low concentration of the high-boiling acetic acid. In the Acetica process, no catalyst recycle is needed, as the solid catalyst stays in the reactor. [Pg.117]

The production of carboxylic acids via carbonylation catalysis is the second most important industrial homogeneous group of processes. Reppe developed most of the basic carbonylation chemistry in the 1930s and 1940s. The first commercial carbonylation process was the stoichiometric Ni(CO)4-based hydroxycarbonylation of acetylene to give acrylic acid (see Section 3.5 for details). This discovery has since evolved into a trae Ni-catalyzed process, used mainly by BASF. The introduction of rhodium catalysts in the 1970s revolutionized carboxylic acid production, particularly for acetic acid, much in the same way that Rh/PPhs catalysts changed the importance of hydroformylation catalysis. [Pg.676]

An important modern example of homogeneous catalysis is provided by the Monsanto process in which the rhodium compound 1.4 catalyses a reaction, resulting in the addition of carbon monoxide to methanol to form ethanoic acid (acetic acid). Another well-known process is hydro-formylation, in which the reaction of carbon monoxide and hydrogen with an alkene, RCH=CH2, forms an aldehyde, RCH2CH2CHO. Certain cobalt or rhodium compounds are effective catalysts for this reaction. In addition to catalytic applications, non-catalytic stoichiometric reactions of transition elements now play a major role in the production of fine organic chemicals and pharmaceuticals. [Pg.15]

The Wacker-Smidt process—hereafter known simply as the Wacker oxidation, reaction, or process—enjoyed considerable success, yet its use has declined dramatically over the past 10 years for at least two reasons.49 First, manufacturing plants are expensive to build and maintain because they must be constructed to withstand a corrosive environment. Second, another procedure that yields acetic acid directly from synthesis gas was developed and now supplants the Wacker-Smidt process. This newer route also uses homogeneous catalysis involving Rh and Ir complexes and will be described in Section 9-5. [Pg.341]

Carbonylation of methanol catalyzed by soluble Group IX transition metal complexes remains the dominant method for the commercial production of acetic acid. The Monsanto process stands as one of the major success stories of homogeneous catalysis, and for three decades it was the preferred technology because of the excellent activity and selectivity of the catalyst. It has been demonstrated by workers at Celanese, however, that addition of iodide salts can significantly benefit the process by improving the catalytic reaction rate and catalyst stability at low water concentrations. Many attempts have been made to enhance the activity of... [Pg.38]

Most of these processes currently make use of homogeneous catalysts. These are usually soluble complexes of transition metals, e.g., Co, Rh, and Ru. For example, conversion of methanol into acetic acid requires catalysis by either Co carbonyl or Rh carbonyl complexes and co-catalysis by iodine. Under reaction conditions iodine is most likely present as HI and CH3I, the latter probably being the agent by which the catalytically active ion (Rh or Co) is alkylated " before a methyl migration to the co-ordinated CO takes place. [Pg.199]

Among such oxidations, note that liquid-phase oxidations of solid paraffins in the presence of heterogeneous and colloidal forms of manganese are accompanied by a substantial increase (compared with homogeneous catalysis) in acid yield [3]. The effectiveness of n-paraffin oxidations by Co(III) macrocomplexes is high, but the selectivity is low the ratio between fatty acids, esters, ketones and alcohols is 3 3 3 1. Liquid-phase oxidations of paraffins proceed in the presence of Cu(II) and Mn(II) complexes boimd with copolymers of vinyl ether, P-pinene and maleic anhydride (Amberlite IRS-50) [130]. Oxidations of both linear and cyclic olefins have been studied more intensively. Oxidations of linear olefins proceed by a free-radical mechanism the accumulation of epoxides, ROOH, RCHO, ketones and RCOOH in the course of the reaction testifies to the chain character of these reactions. The main requirement for these processes is selectivity non-catalytic oxidation of propylene (at 423 K) results in the formation of more than 20 products. Acrylic acid is obtained by oxidation of propylene (in water at 338 K) in the presence of catalyst by two steps at first to acrolein, then to the acid with a selectivity up to 91%. Oxidation of ethylene by oxygen at 383 K in acetic acid in... [Pg.545]

The Monsanto process for acetic acid production from methanol has been a very successful application of homogeneous catalysis with rhodium. ... [Pg.476]


See other pages where Catalysis, homogeneous acetic acid process is mentioned: [Pg.209]    [Pg.202]    [Pg.676]    [Pg.22]    [Pg.675]    [Pg.285]    [Pg.147]    [Pg.417]    [Pg.73]    [Pg.101]    [Pg.216]    [Pg.195]    [Pg.562]    [Pg.80]    [Pg.231]    [Pg.290]    [Pg.5]    [Pg.414]    [Pg.562]    [Pg.534]    [Pg.595]    [Pg.562]    [Pg.562]    [Pg.1327]    [Pg.488]    [Pg.577]    [Pg.242]    [Pg.412]    [Pg.609]    [Pg.563]    [Pg.587]    [Pg.373]    [Pg.379]    [Pg.66]    [Pg.746]   
See also in sourсe #XX -- [ Pg.333 ]




SEARCH



Acetals acid catalysis

Acetate catalysis

Acetic acid catalysis

Acetic acid process

Acetic processing

Acid process

Catalysis processes

Homogeneous catalysis

Homogeneous catalysis process

Homogenization process

Homogenous catalysis

Process homogeneous

Processes homogenous

Processive catalysis

© 2024 chempedia.info