Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids derivatives reaction with alcohol

Esters are derived from carboxylic acids by reaction with alcohols. They have a wide variety of applications ranging from flavouring agents to solvents and explosives. One of the most used painkillers in medication, aspirin, is an ester, while a major class of polymers are the poly(esters). Fats and vegetable oils are naturally occurring esters and the alkaline hydrolysis of such esters (saponification) is used to produce soaps. [Pg.369]

Correlations with o in carboxylic acid derivative reactions have been most successful for variations in the acyl portion, R in RCOX. Variation in the alkyl portion of esters, R in RCOOR, has not led to many good correlations, although use of relative rates of alkaline and acidic reactions, as in the defining relation, can generate linear correlations. The failure to achieve satisfactory correlations with cr for such substrates may be a consequence of the different steric effects of substituents in the acyl and alkyl locations. It has been shown that solvolysis rates of some acetates are related to the pA", of the leaving group, that is, of the parent alcohol. The pK of alcohols has been correlated with but this relationship... [Pg.340]

Thiols undergo the same types of nucleophilic reaction with carboxylic acid derivatives as do alcohols. However, reactivity tends to be increased for two reasons. First, sulfur, because of its larger size, is a better nucleophile than oxygen (see... [Pg.261]

In summary, reductions of carboxylic acid derivatives to primary alcohols are usually accomplished by reaction of esters or acids with lithium aluminum hydride. The following equations provide several examples ... [Pg.827]

B-alkyl-9-BBN derivatives (p. 1077). Since only the 9-alkyl group migrates, this method permits the conversion in high yield of an alkene to a primary alcohol or aldehyde containing one more carbon." When B-alkyl-9-BBN derivatives are treated with CO and lithium tri-ferf-butoxyaluminum hydride," other functional groups (e.g., CN and ester) can be present in the alkyl group without being reduced." Boranes can be directly converted to carboxylic acids by reaction with the dianion of phenoxyacetic acid." " ... [Pg.1629]

Esters are derived from carboxylic acids by reaction with an alcohol. The first part of the name of an ester is taken from the alkyl group of the alcohol from which it was synthesized. The second part of its name denotes the acid from which the compound is derived. This is the part of the structure that contains the carbonyl group >C=0. Thus an ethanoate is the product made from ethanoic acid, and so on. [Pg.340]

Not only acylimino acids (VI. B.) but also 2-alkylidene- and 2-aryli-dene-A -oxazolin-5-ones (55) (pseudooxazolones) add nucleophiles. Simultaneous ring opening is usually observed 195, 237, 238, 239, 397) yielding the corresponding amino acid derivatives. Reaction with ammonia or amines resp. alcohols yields a,a-diamino carboxylic acid esters (56) or a-alkoxy-a-acylaminocarboxylic acid esters (58) respectively. Mercaptans add so rapidly that mercaptooxazolinones (57) can be isolated and then opened with other nucleophiles. [Pg.284]

Acid halides are among the most reactive of carboxylic acid derivatives and can be converted into many other kinds of compounds by nucleophilic acyl substitution mechanisms. The halogen can be replaced by -OH to yield an acid, by —OCOR to yield an anhydride, by -OR to yield an ester, or by -NH2 to yield an amide. In addition, the reduction of an acid halide yields a primary alcohol, and reaction with a Grignard reagent yields a tertiary alcohol. Although the reactions we ll be discussing in this section are illustrated only for acid chlorides, similar processes take place with other acid halides. [Pg.800]

Conversion of Amides into Amines Reduction Like other carboxylic acid derivatives, amides can be reduced by LiAlH.4. The product of the reduction, however, is an amine rather than an alcohol. The net effect of an amide reduction reaction is thus the conversion of the amide carbonyl group into a methylene group (C=0 —> CTbV This kind of reaction is specific for amides and does not occur with other carboxylic acid derivatives. [Pg.815]

As noted in the preceding section, one of the most general methods of synthesis of esters is by reaction of alcohols with an acyl chloride or other activated carboxylic acid derivative. Section 3.2.5 dealt with two other important methods, namely, reactions with diazoalkanes and reactions of carboxylate salts with alkyl halides or sulfonate esters. There is also the acid-catalyzed reaction of carboxylic acids with alcohols, which is called the Fischer esterification. [Pg.252]

The heterocyclic derivative successfully protects the acid from attack by Grignard or hydride-transfer reagents. The carboxylic acid group can be regenerated by acidic hydrolysis or converted to an ester by acid-catalyzed reaction with the appropriate alcohol. [Pg.275]

The kinetics of deuterium isotope exchange between diphenyl phosphine and t-butylthiol have been studied by H n.m.r. spectroscopy.274 A negative temperature coefficient was observed for the reaction of a perf1uoroalky1 phosphite with a fluorinated aldehyde.275 The kinetics for the reaction of alcohols with phosphoryl trichloride bore strong similarities to those of carboxylic acid derivatives.276 An interesting report desribed the solvolysis of ary 1 hydroxymethyl-phosphonates. It was shown that a phosphoryl group does not prevent carbocation formation on an immediately adjacent carbon atom.277... [Pg.416]

An alternative mechanism [8] entails reaction of cyanamide (or dicyandiamide) with the dye phosphonate to give an O-acylisourea derivative (7.47). This is able to react directly with cellulose to form dye-fibre bonds, urea being released as the anticipated by-product (Scheme 7.31). In support of this mechanism, it is known that O-acylisourea derivatives of arylcarboxylic acids react readily with alcohols and this constitutes an efficient route for the preparation of carboxylic esters [44]. [Pg.381]

The next step is an unusual approach to making an ester via an Sn2 reaction. We usually make esters by the reaction of alcohols with activated carboxylic acid derivatives like acyl chlorides, or anhydrides as we have just seen. We do not particularly want to have to convert the carboxylic acid (X) into a more reactive... [Pg.629]

The replacement of a halide or tosylate ion, extending the carbon chain by one atom and providing an entry to carboxylic acid derivatives, has been a reaction of synthetic importance since the early days of organic chemistry. The classical conditions for preparing nitriles involves heating a halide with a cyanide salt in aqueous alcohol solution ... [Pg.150]

The cyclocondensation of l,3-amino alcohols with carboxylic acid derivatives is a method often applied for the synthesis of 5,6-dihydro-4/7-l,3-oxazines <1996CHEC-II(6)301 >. Ebsorb-4, a weakly acidic zeolite-type adsorbent with 4 A pore size, proved an efficient catalyst of the cyclization of benzoic acid and 3-aminopropanol <2002TL3985>. In the presence of zinc chloride as a catalyst, the expulsion of ammonia drove the reactions of 3-aminopropanol with nitriles to completion, affording 2-substituted 5,6-dihydro-47f-l,3-oxazines in good yields... [Pg.421]

The newer HFC refrigerants are not soluble in or miscible with mineral oils or alkylbenzenes. The leading candidates for use with HFC refrigerants are polyol ester lubricants. These lubricants are derived from a reaction between an alcohol and a normal or branched carboxylic acid. The most common alcohols used are pentaerythritol, trimethylolpropane, neopentylglycol, and glycerol. The acids are usually selected to give the correct viscosity and fluidity at low temperatures. [Pg.69]

Cinnamic alcohol can be dehydrogenated to give cinnamaldehyde and oxidized to give cinnamic acid. Hydrogenation yields 3-phenylpropanol and/or 3-cyclo-hexylpropanol. Reaction with carboxylic acids or carboxylic acid derivatives results in the formation of cinnamyl esters, some of which are used as fragrance materials. [Pg.103]

A nucleophile is an electron rich species that reacts with an electrophile. The term electrophile literally means electron-loving , and is an electron-deficient species that can accept an electron pair. A number of nucleophilic substitution reactions can occur with alkyl halides, alcohols and epoxides. However, it can also take place with carboxylic acid derivatives, and is called nucleophilic acyl substitution. [Pg.232]

Note that the reaction at the phosphorus atom is postulated to occur by an SN2 (no intermediate formed) rather than by an addition mechanism such as we encountered with carboxylic acid derivatives (Kirby and Warren, 1967). As we learned in Section 13.2, for attack at a saturated carbon atom, OH- is a better nucleophile than H20 by about a factor of 104 (Table 13.2). Toward phosphorus, which is a harder electrophilic center (see Box 13.1), however, the relative nucleophilicity increases dramatically. For triphenyl phosphate, for example, OH- is about 108 times stronger than H20 as a nucleophile (Barnard et al., 1961). Note that in the case of triphenyl phosphate, no substitution may occur at the carbon bound to the oxygen of the alcohol moiety, and therefore, neutral hydrolysis is much less important as compared to the other cases (see /NB values in Table 13.12). Consequently, the base-catalyzed reaction generally occurs at the phosphorus atom leading to the dissociation of the alcohol moiety that is the best leaving group (P-0 cleavage), as is illustrated by the reaction of parathion with OH ... [Pg.538]

For most cases, common fluoroacyl derivatives are sufficiently reactive and selective Thus conversion of perfluoroglutaric dichloride to a monomethyl ester by methanol proceeds smoothly under the appropriate reaction conditions [17] (equation 9) Perfluorosuccinic acid monoester fluoride, on the other hand, is prepared most conveniently from perfluorobutyrolacetone [IS] (equation 10) Owing to the strong acidity of a fluonnated carboxylic acids, Fischer esterification with most aliphatic alcohols proceeds autocatalytically [79 20]... [Pg.527]

Formation of quinuclidine-3-carboxylic acid derivatives (68) from these reactions was conclusive proof of saponification of the ethoxy-carbonyl group at position 2 of the diester (61). A similar reaction takes place with diethyl quinuclidine-2,3-dicarboxylate.100 This is in agreement with the known principle of easier saponification of a- than j8-amino acid esters. Some 3-(j8-acyloxyethyl)-2-diethylaminomethyl-quinuclidines (69, 70)123 on distillation at atmospheric pressure cyclize with loss of ester and formation of a new tricyclic system, quinuclidino[2,3-c]piperidine (72). The same reaction takes place by heating the corresponding amino alcohol (71) with phthalic anhydride in the presence of benzenesulfonic acid.123... [Pg.498]

Carboxy terminal amino acid or peptide thiols are prepared from various p-amino alcohols by conversion into a thioacetate (R2NHCHR1CH2SAc) via a tosylate followed by saponification.Several methods have been used to prepare N-terminal peptide thiols, the most common procedure is the coupling of (acetylsulfanyl)- or (benzoylsulfanyl)alkanoic acids or add chlorides with a-amino esters or peptide esters, followed by deprotection of the sulfanyl and carboxy groups. 8 16 Other synthetic methods include deprotection of (trit-ylsulfanyl)alkanoyl peptides, 1718 alkaline treatment of the thiolactones from protected a-sulfanyl acids, 19 and preparation of P-sulfanylamides (HSCH2CHR1NHCOR2, retro-thior-phan derivatives) from N-protected amino acids by reaction of P-amine disulfides with carboxylic acid derivatives, followed by reduction. 20,21 In many cases, the amino acid or peptide thiols are synthesized as the disulfides and reduced to the corresponding thiols by the addition of dithiothreitol prior to use. [Pg.304]


See other pages where Carboxylic acids derivatives reaction with alcohol is mentioned: [Pg.1424]    [Pg.1286]    [Pg.130]    [Pg.1107]    [Pg.4]    [Pg.484]    [Pg.19]    [Pg.185]    [Pg.178]    [Pg.340]    [Pg.1335]    [Pg.48]    [Pg.199]    [Pg.178]    [Pg.111]    [Pg.298]    [Pg.112]    [Pg.1533]    [Pg.492]    [Pg.83]    [Pg.222]    [Pg.77]    [Pg.199]    [Pg.242]   
See also in sourсe #XX -- [ Pg.501 , Pg.502 ]




SEARCH



Alcohols carboxylation

Alcohols derivatives

Alcohols reaction with carboxylic acids

Carboxylates reaction with

Carboxylation reaction with

Carboxylic acid derivates

Carboxylic acid derivs

Carboxylic acids alcohol)

Carboxylic acids reactions

Carboxylic acids, functional derivatives reaction with alcohols

Carboxylic acids, with alcohols

Carboxylic derivs., reactions

Carboxylic reactions with

Reaction with alcohols

Reaction with carboxylic acids

With Carboxylic Acid Derivatives

© 2024 chempedia.info