Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolic enzymes, carboxylesterases

Differences among species in distribution patterns of histological changes may be caused by species variations in the distribution in the nasal epithelium of chemical-metabolizing enzymes. For example, in rats exposed to methyl methacrylate, nasal lesions were shown to be caused by the carboxylesterase mediated metabolism of methyl methacrylate to methacrylic acid, an irritant and corrosive metabohte. The distribution of these enzymes in the nasal tissues of man, rat, and hamster indicated a lower rate of metabolism in man compared to rat and hamster, suggesting a lower sensitivity to methacrylate in humans (Mainwaring et al. 2001). [Pg.144]

The metabolism of foreign compounds (xenobiotics) often takes place in two consecutive reactions, classically referred to as phases one and two. Phase I is a functionalization of the lipophilic compound that can be used to attach a conjugate in Phase II. The conjugated product is usually sufficiently water-soluble to be excretable into the urine. The most important biotransformations of Phase I are aromatic and aliphatic hydroxylations catalyzed by cytochromes P450. Other Phase I enzymes are for example epoxide hydrolases or carboxylesterases. Typical Phase II enzymes are UDP-glucuronosyltrans-ferases, sulfotransferases, N-acetyltransferases and methyltransferases e.g. thiopurin S-methyltransferase. [Pg.450]

The microsomal fraction consists mainly of vesicles (microsomes) derived from the endoplasmic reticulum (smooth and rough). It contains cytochrome P450 and NADPH/cytochrome P450 reductase (collectively the microsomal monooxygenase system), carboxylesterases, A-esterases, epoxide hydrolases, glucuronyl transferases, and other enzymes that metabolize xenobiotics. The 105,000 g supernatant contains soluble enzymes such as glutathione-5-trans-ferases, sulfotransferases, and certain esterases. The 11,000 g supernatant contains all of the types of enzyme listed earlier. [Pg.46]

Carboxylesterases and amidases catalyze hydrolysis of carboxy esters and carboxy amides to the corresponding carboxylic acids and alcohols or amines. In general those enzymes capable of catalyzing hydrolysis of carboxy esters are also amidases, and vice versa (110). The role of these enzymes in metabolsim of drugs and insecticides has been reviewed (111, 112). In addition to the interest in mammalian metabolism of drugs and environmental chemicals, microbial esterases have been used for enantioselective hydrolyses (113, 114). [Pg.354]

Cross-tolerance between disulfoton and another organophosphate, chlorpyrifos, was observed in mice (Costa and Murphy 1983b). Because of this cross-tolerance, a benefit is derived as a result of this interaction. In the same study, propoxur-tolerant mice were tolerant to disulfoton but not vice versa. Propoxur (a carbamate) is metabolized by carboxylesterases, and these enzymes are inhibited in disulfoton-tolerant animals disulfoton-tolerant animals are more susceptible to propoxur and/or carbamate insecticides than are nonpretreated animals. In another study, disulfoton-tolerant rats were tolerant to the cholinergic effects of octamethyl pyrophosphoramide (OMPA) but not parathion (McPhillips 1969a, 1969b). The authors were unable to explain why the insecticides OMPA and parathion caused different effects. [Pg.125]

The physiological functions of carboxylesterases are still partly obscure but these enzymes are probably essential, since their genetic codes have been preserved throughout evolution [84] [96], There is some evidence that microsomal carboxylesterases play an important role in lipid metabolism in the endoplasmic reticulum. Indeed, they are able to hydrolyze acylcamitines, pal-mitoyl-CoA, and mono- and diacylglycerols [74a] [77] [97]. It has been speculated that these hydrolytic activities may facilitate the transfer of fatty acids across the endoplasmic reticulum and/or prevent the accumulation of mem-branolytic natural detergents such as carnitine esters and lysophospholipids. Plasma esterases are possibly also involved in fat absorption. In the rat, an increase in dietary fats was associated with a pronounced increase in the activity of ESI. In the mouse, the infusion of lipids into the duodenum decreased ESI levels in both lymph and serum, whereas an increase in ES2 levels was observed. In the lymph, the levels of ES2 paralleled triglyceride concentrations [92] [98],... [Pg.51]

Amidases can be found in all kinds of organisms, including insects and plants [24], The distinct activities of these enzymes in different organisms can be exploited for the development of selective insecticides and herbicides that exhibit minimal toxicity for mammals. Thus, the low toxicity in mammals of the malathion derivative dimethoate (4.44) can be attributed to a specific metabolic route that transforms this compound into the nontoxic acid (4.45) [25-27]. However, there are cases in which toxicity is not species-selective. Indeed, in the preparation of these organophosphates, some contaminants that are inhibitors of mammalian carboxylesterase/am-idase may be present [28]. Sometimes the compound itself, and not simply one of its impurities, is toxic. For example, an insecticide such as phos-phamidon (4.46) cannot be detoxified by deamination since it is an amidase inhibitor [24],... [Pg.113]

Natural (-)-cocaine (7.57, Fig. 7.8), which has the (2/ ,3S)-configuration, is a relatively poor substrate for hepatic carboxylesterases and plasma cholinesterase (EC 3.1.1.8), and also a potent competitive inhibitor of the latter enzyme [116][121], In contrast, the unnatural enantiomer, (+)-(2S,3/ )-cocaine, is a good substrate for carboxylesterases and cholinesterase. Because hydrolysis is a route of detoxification for cocaine and its stereoisomers, such metabolic differences have a major import on their monooxygenase-catalyzed toxification, a reaction of particular effectiveness for (-)-cocaine. [Pg.411]

Thioesters play a paramount biochemical role in the metabolism of fatty acids and lipids. Indeed, fatty acyl-coenzyme A thioesters are pivotal in fatty acid anabolism and catabolism, in protein acylation, and in the synthesis of triacylglycerols, phospholipids and cholesterol esters [145], It is in these reactions that the peculiar reactivity of thioesters is of such significance. Many hydrolases, and mainly mitochondrial thiolester hydrolases (EC 3.1.2), are able to cleave thioesters. In addition, cholinesterases and carboxylesterases show some activity, but this is not a constant property of these enzymes since, for example, carboxylesterases from human monocytes were found to be inactive toward some endogenous thioesters [35] [146], In contrast, allococaine benzoyl thioester was found to be a good substrate of pig liver esterase, human and mouse butyrylcholinesterase, and mouse acetylcholinesterase [147],... [Pg.416]

Capecitabine is a fluoropyrimidine carbamate prodrug with 70-80% oral bioavailability. It undergoes extensive metabolism in the liver by the enzyme carboxylesterase to an intermediate, 5 -deoxy-5-fluorocytidine. This is converted to 5 -deoxy-5-fluorouridine by the enzyme cytidine deaminase. These two initial steps occur mainly in the liver. The 5 -deoxy-5-fluorouridine metabolite is then hydrolyzed by thymidine phosphorylase to 5-FU directly in the tumor. The expression of thymidine phosphorylase has been shown to be significantly higher in a broad range of solid tumors than in corresponding normal tissue, particularly in breast cancer and colorectal cancer. [Pg.1173]

Esters, amides, hydrazides, and carbamates can all be metabolized by hydrolysis. The enzymes, which catalyze these hydrolytic reactions, carboxylesterases and amidases, are usually found in the cytosol, but microsomal esterases and amidases have been described and some are also found in the plasma. The various enzymes have different substrate specificities, but carboxylesterases have amidase activity and amidases have esterase activity. The two apparently different activities may therefore be part of the same overall activity. [Pg.99]

Various esterases exist in mammalian tissues, hydrolyzing different types of esters. They have been classified as type A, B, or C on the basis of activity toward phosphate triesters. A-esterases, which include arylesterases, are not inhibited by phosphotriesters and will metabolize them by hydrolysis. Paraoxonase is a type A esterase (an organophosphatase). B-esterases are inhibited by paraoxon and have a serine group in the active site (see chap. 7). Within this group are carboxylesterases, cholinesterases, and arylamidases. C-esterases are also not inhibited by paraoxon, and the preferred substrates are acetyl esters, hence these are acetylesterases. Carboxythioesters are also hydrolyzed by esterases. Other enzymes such as trypsin and chymotrypsin may also hydrolyze certain carboxyl esters. [Pg.99]

The nasal route of drug delivery avoids the liver first-pass effect, but the pseudo-first-pass effect owing to nasal metabolism of drugs is still a concern. Many enzymes such as carboxylesterase, aldehyde dehydrogenase, glutathione transferases, UDP-glucoronyl transferase, epoxide hydrolases, CYP-dependent monoxygenases, exo- and endopeptidases and proteases are present in the nasal mucosa.106 108,110,116 CYP enzymes are present abundantly in the olfactory epithelium.107,110... [Pg.63]

The in vivo metabolism of capecitabine (1) to the active tumor cytotoxic substance 5-fluorouracil (5) is now fairly well understood. When capecitabine is administered orally it is delivered to the small intestine, where it is not a substrate for thymidine phosphorylase in intestinal tissue, and so passes through the intestinal mucosa as an intact molecule and into the bloodstream. When 1 reaches the liver, the carbamate moiety is hydrolyzed through the action of carboxylesterase enzymes, liberating 5 -deoxy-5-fluorocytidine (5 -DFCR, 10). DFUR is partially stable in systemic circulation, but eventually diffuses into tumor cell tissue where it is transformed into 5 -deoxy-5-fluorouridine (5 -DFUR, 9) by cytidine deaminase, an enzyme present in high concentrations in various types of human cancers compared to adjacent healthy cells (although it is present in significantly lower levels in the liver). Within the tumor, 5-... [Pg.61]

The inhibition by other organophosphate compounds of the carboxylesterase which hydrolyzes malathion is a further example of xenobiotic interaction resulting from irreversible inhibition because, in this case, the enzyme is phosphorylated by the inhibitor. A second type of inhibition involving organophosphorus insecticides involves those containing the P=S moiety. During CYP activation to the esterase-inhibiting oxon, reactive sulfur is released that inhibits CYP isoforms by an irreversible interaction with the heme iron. As a result, these chemicals are inhibitors of the metabolism of other xenobiotics, such as carbaryl and fipronil, and are potent inhibitors of the metabolism of steroid hormones such as testosterone and estradiol. [Pg.200]

The metabolic pathways of hydroprene will be used to illustrate the fate of juvenoid insecticides (Figure 8.31). It can be seen that the metabolism of hydroprene involves three different enzymes the carboxylesterases, the cytochrome P450 monooxygenases, and epoxide hydrolase. The latter does not attack until an epoxide has been produced by the P450s. [Pg.163]


See other pages where Metabolic enzymes, carboxylesterases is mentioned: [Pg.158]    [Pg.186]    [Pg.1689]    [Pg.399]    [Pg.1689]    [Pg.110]    [Pg.80]    [Pg.57]    [Pg.150]    [Pg.38]    [Pg.62]    [Pg.520]    [Pg.114]    [Pg.124]    [Pg.52]    [Pg.407]    [Pg.424]    [Pg.35]    [Pg.179]    [Pg.376]    [Pg.181]    [Pg.315]    [Pg.496]    [Pg.150]    [Pg.150]    [Pg.159]    [Pg.77]    [Pg.807]    [Pg.655]    [Pg.432]   
See also in sourсe #XX -- [ Pg.57 , Pg.219 ]




SEARCH



Carboxylesterase

Carboxylesterase-2 enzyme

Carboxylesterases

Carboxylesterases metabolism

Metabolic enzymes

Metabolism enzymes

Metabolizing enzymes

© 2024 chempedia.info