Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonylation, of methanol

Since the initial discovery of Crabtree s catalyst, the most intense research activity has centered on developing Ir catalysts that will promote asymmetric hydrogenations. This work will be discussed in more detail in Chapter 12. [Pg.361]

In the mid 1960s, the German-based chemical company BASF developed a methanol carbonylation process using a mixture of Co2(CO)8 and HI as catalyst. Unfortunately, severe conditions (210 °C and 700 bar) were required to produce CH3C02H rapidly enough and in sufficient amount to be commercially acceptable. A few years later, Monsanto announced a significant breakthrough in the [Pg.361]

87Consistent with the SN2 mechanism are the observations that the rate of reaction is 10 times slower when Br is the co-catalyst instead of I and that the rates of carbonylation of methyl, ethyl, and propyl alcohols parallel the rates of ordinary SN2 substitution of the corresponding alkyl halides with methyl ethyl propyl. [Pg.362]

The rate of carbonylation of 2-propanol to give a mixture of butanoic and Exercise 9-10 [Pg.363]

2-methylpropanoic acids is actually a lithe faster than that for carbonylation ------------- [Pg.363]


This process comprises passing synthesis gas over 5% rhodium on Si02 at 300°C and 2.0 MPa (20 atm). Principal coproducts are acetaldehyde, 24% acetic acid, 20% and ethanol, 16%. Although interest in new routes to acetaldehyde has fallen as a result of the reduced demand for this chemical, one possible new route to both acetaldehyde and ethanol is the reductive carbonylation of methanol (85). [Pg.53]

Acetic Acid and Anhydride. Synthesis of acetic acid by carbonylation of methanol is another important homogeneous catalytic reaction. The Monsanto acetic acid process developed in the late 1960s is the best known variant of the process. [Pg.166]

Formic acid is currently produced iadustriaHy by three main processes (/) acidolysis of formate salts, which are ia turn by-products of other processes (2) as a coproduct with acetic acid ia the Hquid-phase oxidation of hydrocarbons or (3) carbonylation of methanol to methyl formate, followed either by direct hydrolysis of the ester or by the iatermediacy of formamide. [Pg.504]

The carbonylation of methanol [67-56-1] to methyl formate ia the presence of basic catalysts has been practiced iadustriaHy for many years. Ia older processes for formic acid utili2ing this reactioa, the methyl formate [107-31-3] reacts with ammonia to give formamide [75-12-7] which is hydroly2ed to formic acid ia the preseace of sulfuric acid ... [Pg.504]

Acetic acid is produced by direct carbonylation of methanol in the presence of a homogeneous rhodium or cobalt catalyst. [Pg.274]

The advent of a large international trade in methanol as a chemical feedstock has prompted additional purchase specifications, depending on the end user. Chlorides, which would be potential contaminants from seawater during ocean transport, are common downstream catalyst poisons likely to be excluded. Limitations on iron and sulfur can similarly be expected. Some users are sensitive to specific by-products for a variety of reasons. Eor example, alkaline compounds neutralize MTBE catalysts, and ethanol causes objectionable propionic acid formation in the carbonylation of methanol to acetic acid. Very high purity methanol is available from reagent vendors for small-scale electronic and pharmaceutical appHcations. [Pg.282]

Whereas this reaction was used to oxidize ethylene (qv) to acetaldehyde (qv), which in turn was oxidized to acetic acid, the direct carbonylation of methanol (qv) to acetic acid has largely replaced the Wacker process industrially (see Acetic acid and derivatives). A large number of other oxidation reactions of hydrocarbons by oxygen involve coordination compounds as detailed elsewhere (25). [Pg.171]

The carbonylation of methanol is currently one of the major routes for acetic acid production. The basic liquid-phase process developed by BASF uses a cobalt catalyst at 250°C and a high pressure of about 70... [Pg.154]

Acetic acid is obtained from different sources. Carbonylation of methanol is currently the major route. Oxidation of butanes and butenes is an important source of acetic acid, especially in the U.S. (Chapter 6). It is also produced by the catalyzed oxidation of acetaldehyde ... [Pg.199]

Currently, the major route for obtaining acetic acid (ethanoic acid) is the carbonylation of methanol (Chapter 5). It may also be produced by the catalyzed oxidation of n-butane (Chapter 6). [Pg.239]

Such a complex, cw-Rh(CO)2I2, is the active species in the Monsanto process for low-pressure carbonylation of methanol to ethanoic acid. The reaction is first order in iodomethane and in the rhodium catalyst the rate-determining step is oxidative addition between these followed by... [Pg.103]

Carbonylation of methanol to acetic acid is fully discussed in Chapter 9. Another carbonylation process using a phosphine ligand to control the course of the reaction is a highly atom efficient route to the widely used monomer methyl methacrylate (Scheme 4.19). In this process the catalyst is based on palladium acetate and the phosphine ligand, bisphenyl(6-methyl-2-pyridyl) phosphine. This catalyst is remarkably (>99.5%) selective for the 2-carbonylation of propyne under the relatively mild conditions of <100 °C and 60 bar pressure. [Pg.112]

Industry uses a multitude of homogenous catalysts in all kinds of reactions to produce chemicals. The catalytic carbonylation of methanol to acetic acid... [Pg.6]

Historically, the rhodium catalyzed carbonylation of methanol to acetic acid required large quantities of methyl iodide co-catalyst (1) and the related hydrocarboxylation of olefins required the presence of an alkyl iodide or hydrogen iodide (2). Unfortunately, the alkyl halides pose several significant difficulties since they are highly toxic, lead to iodine contamination of the final product, are highly corrosive, and are expensive to purchase and handle. Attempts to eliminate alkyl halides or their precursors have proven futile to date (1). [Pg.329]

Recently, Eastman Chemical Company reported that ionic liquids can be successfully employed in a vapor take-off process for the carbonylation of methanol to acetic acid in the presence of rhodium and methyl iodide (3). While attempting to extend this earlier work to the carbonylation of ethylene to propionic acid, we discovered that, when using ionic liquids as a solvent, acceptable carbonylation rates could be attained in the absence of any added alkyl iodide or hydrogen iodide (4). We subsequently demonstrated that the carbonylation of methanol to acetic acid could also be operated in the absence of methyl iodide when using ionic liquids (5). [Pg.329]

General Procedure for Batch Carbonylation of Methanol in the Absence of Methyl Iodide. A complete set of procedures appears in ref. 5 bnt the following procedure is representative of a methanol carbonylation. To a 300 mL Hastelloy C-276 autoclave was added 0.396 g (1.5 mmol) of RhCl3 3H20, 112.0 g (0.507 mol) of N-methyl pyridinium iodide, 30.0 g (0.5 mol) of acetic acid, and 64.0 g (2.0 mol) of methanol. The mixture was heated to 190°C under 250 psi (1.72 MPa) of 5% hydrogen in carbon monoxide. Upon reaching temperatnre the gas feed was switched... [Pg.330]

Given the absenee (or near absenee) of Mel in these reaetions, we sought to demonstrate the proeess on a eontinuous proeess. We purposely ehose to employ the same vapor take-off (vapor stripped) reaetor we used in om earher studies of the Rh/Mel co-catalyzed carbonylation of methanol (3) since the vapor stripping procedure used in the process would force any Mel formed in situ overhead where we could detect it in the effluent. This would represent the most rigorous test of the new non-Mel process we could contrive. [Pg.336]

It is well known that Rh(I) complexes can catalyze the carbonylation of methanol. A heterogenized catalyst was prepared by ion exchange of zeolite X or Y with Rh cations.126 The same catalytic cycle takes place in zeolites and in solution because the activation energy is nearly the same. The specific activity in zeolites, however, is less by an order of magnitude, suggesting that the Rh sites in the zeolite are not uniformly accessible. The oxidation of camphene was performed over zeolites exchanged with different metals (Mn, Co, Cu, Ni, and Zn).127 Cu-loaded zeolites have attracted considerable attention because of their unique properties applied in catalytic redox reactions.128-130 Four different Cu sites with defined coordinations have been found.131 It was found that the zeolitic media affects strongly the catalytic activity of the Cd2+ ion sites in Cd zeolites used to catalyze the hydration of acetylene.132... [Pg.257]

The carbonylation of methanol was developed by Monsanto in the late 1960s. It is a large-scale operation employing a rhodium/iodide catalyst converting methanol and carbon monoxide into acetic acid. An older method involves the same carbonylation reaction carried out with a cobalt catalyst (see Section 9.3.2.4). For many years the Monsanto process has been the most attractive route for the preparation of acetic acid, but in recent years the iridium-based CATIVA process, developed by BP, has come on stream (see Section 9.3.2) ... [Pg.142]

Other companies (e.g., Hoechst) have developed a slightly different process in which the water content is low in order to save CO feedstock. In the absence of water it turned out that the catalyst precipitates. Clearly, at low water concentrations the reduction of rhodium(III) back to rhodium(I) is much slower, but the formation of the trivalent rhodium species is reduced in the first place, because the HI content decreases with the water concentration. The water content is kept low by adding part of the methanol in the form of methyl acetate. Indeed, the shift reaction is now suppressed. Stabilization of the rhodium species and lowering of the HI content can be achieved by the addition of iodide salts. High reaction rates and low catalyst usage can be achieved at low reactor water concentration by the introduction of tertiary phosphine oxide additives.8 The kinetics of the title reaction with respect to [MeOH] change if H20 is used as a solvent instead of AcOH.9 Kinetic data for the Rh-catalyzed carbonylation of methanol have been critically analyzed. The discrepancy between the reaction rate constants is due to ignoring the effect of vapor-liquid equilibrium of the iodide promoter.10... [Pg.144]

Rh(CO)2(acac)(dppp)] as a catalyst (where acac = acetylacetonate) gives high rates (100-200 turnovers h 1) and selectivities in the reductive carbonylation of methanol to acetaldehyde comparable to the best Co catalysts, but at a much lower temperature (140 °Q and pressure... [Pg.144]

The complex ds-[RhI(CO)(Ph2PCH2P(S)Ph2)] (9) is eight times more active than (1) for the carbonylation of methanol at 185 °C the X-ray crystal structure of the analogous complex with chloride in place of iodide was reported together with in situ spectroscopic evidence in the catalytic cycle.16 A more detailed study of (9) showed that indeed oxidative addition is faster, but that in this instance due to a steric effect the migratory insertion was also accelerated.17... [Pg.145]

Several nickel catalysts for the carbonylation of methanol have been reported,54"57 and an IR study has been described.58 The carbonylation of MeOH to form MeOAc and HOAc was studied using phosphine-modified Nil2 as the metal catalyst precursor. The reaction was monitored using a high-pressure, high-temperature, in situ Cylindrical Internal Reflectance FTIR reactor (CIR-REACTOR). [Pg.147]

The reduction steps on active Co sites are strongly affected by activated hydrogen transferred from promoter metal particles (Pt and Ru). Several indications for the existence and importance of hetero-bimetallic centers have been obtained.63 [Cp Co(CO)2] in the presence of PEt3 and Mel catalyzes the carbonylation of methanol with initial rates up to 44 mol L 1 h 1 before decaying to a second catalytic phase with rates of 3 mol L 1 h-1.64 HOAc-AcOMe mixtures were prepared by reaction of MeOH with CO in the presence of Co(II) acetate, iodine, and additional Pt or Pd salts, e.g., [(Ph3P)2PdCl2] at 120-80 °C and 160-250 atm.65... [Pg.148]

These complexes anchored to a solid via a ligand have been tested for a number of reactions including the hydrogenation, hydroformylation, hydrosilylation, isomerization, dimerization, oligomerization, and polymerization of olefins carbonylation of methanol the water gas shift reaction and various oxidation and hydrolysis reactions (see later for some examples). In most cases, the characterization of the supported entities is very limited the surface reactions are often described on the basis of well-known chemistry, confirmed in some cases by spectroscopic data and elemental analysis. [Pg.450]

One of the only examples of a commercial process using immobilised homogeneous catalysts comprises an anionic rhodium complex [RhI2(CO)2] that is bound via ionic interactions to an ion exchange resin [3] and is used for the carbonylation of methanol. [Pg.60]

An anionic rhodium iodide carbonyl complex was supported on polyvinylpyrrolidone for the carbonylation of methanol in the presence of scC02 [98], Depending on the reaction conditions and method of extraction, less than 0.08% rhodium leaching was observed. Saturation of the support with methyl iodide was found to be vital to enhance the longevity and recyclability of the catalyst. [Pg.231]

Mechanistic Pathways in the Catalytic Carbonylation of Methanol by Rhodium and Iridium Complexes... [Pg.255]

Meanwhile, Wacker Chemie developed the palladium-copper-catalyzed oxidative hydration of ethylene to acetaldehyde. In 1965 BASF described a high-pressure process for the carbonylation of methanol to acetic acid using an iodide-promoted cobalt catalyst (/, 2), and then in 1968, Paulik and Roth of Monsanto Company announced the discovery of a low-pressure carbonylation of methanol using an iodide-promoted rhodium or iridium catalyst (J). In 1970 Monsanto started up a large plant based on the rhodium catalyst. [Pg.256]

THE CARBONYLATION OF METHANOL CATALYZED BY RHODIUM COMPLEXES IN SOLUTION... [Pg.257]


See other pages where Carbonylation, of methanol is mentioned: [Pg.171]    [Pg.229]    [Pg.83]    [Pg.141]    [Pg.142]    [Pg.145]    [Pg.145]    [Pg.146]    [Pg.146]    [Pg.146]    [Pg.147]    [Pg.148]    [Pg.39]    [Pg.14]    [Pg.66]    [Pg.255]    [Pg.264]   
See also in sourсe #XX -- [ Pg.229 ]

See also in sourсe #XX -- [ Pg.255 , Pg.256 , Pg.257 , Pg.258 , Pg.259 , Pg.260 , Pg.261 , Pg.262 , Pg.263 , Pg.264 , Pg.265 , Pg.266 ]

See also in sourсe #XX -- [ Pg.751 ]

See also in sourсe #XX -- [ Pg.361 , Pg.362 , Pg.363 , Pg.364 , Pg.365 , Pg.366 ]

See also in sourсe #XX -- [ Pg.232 , Pg.233 , Pg.240 ]




SEARCH



Acetic acid by carbonylation of methanol

CARBONYLATION OF METHANOL AND METHYL ACETATE

Carbonylation of methanol to acetic acid

Case Study Transition-Metal Catalyzed Carbonylation of Methanol

Catalytic carbonylation of methanol

Catalyzed Carbonylation of Methanol BPs Cativa Process

Cobalt-Catalyzed Carbonylation of Methanol

Iridium-Catalyzed Carbonylation of Methanol

Mechanistic Pathways in the Catalytic Carbonylation of Methanol by Rhodium and

Mechanistic Pathways in the Catalytic Carbonylation of Methanol by Rhodium and Iridium

Mechanistic Pathways in the Catalytic Carbonylation of Methanol by Rhodium and Iridium Complexes

Methanol carbonylations

Oxidative carbonylation of methanol

The Carbonylation of Methanol Catalyzed by Rhodium Complexes in Solution

© 2024 chempedia.info