Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds synthetic applications

The mam synthetic application of Grignard reagents is their reaction with certain carbonyl containing compounds to produce alcohols Carbon-carbon bond formation is rapid and exothermic when a Grignard reagent reacts with an aldehyde or ketone... [Pg.594]

The principal synthetic application of lithium dialkylcuprate reagents IS their reaction with a 3 unsatu rated carbonyl compounds Al kylation of the 3 carbon occurs... [Pg.784]

Active carbonyl compounds such as benzaldehyde attack the electron-rich double bond in DTDAFs to give a dipolar adduct, which immediately undergoes dissociation with formation of two molecules of 146 (64BSF2857 67LA155).Tlie existence of by-products such as benzoin led to the synthetic application of thiazolium salts in the acyloin condensation. For example, replacement of the classic cyanide ion by 3-benzyl-4-methyl-5(/3-hydroxyethyl) thiazolium salts allowed the benzoin-type condensation to take place in nonaqueous solvents (76AGE639) (Scheme 57). [Pg.168]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

The required nitrite esters 1 can easily be obtained by reaction of an appropriate alcohol with nitrosyl chloride (NOCl). The 3-nitroso alcohols 2 formed by the Barton reaction are useful intermediates for further synthetic transformations, and might for example be converted into carbonyl compounds or amines. The most important application for the Barton reaction is its use for the transformation of a non-activated C-H group into a functional group. This has for example been applied for the functionalisation of the non-activated methyl groups C-18 and C-19 in the synthesis of certain steroids. ... [Pg.26]

Introduction of the phenylthio group onto the 5-carbon atom of alcohols can have valuable synthetic applications. 5-Phenylthio alcohols can be oxidized to the corresponding 5-sulfoxides and sulfones (with their versatile reactivities) or they can be deprotonated by strong base converting the 5-carbon atom to a nucleophilic species. Conversion of 5-phenylthio alcohols to the corresponding 5-carbonyl compounds can be achieved via halogenation followed by subsequent hydrolysis. In this way an inversion of the reactivity of the 5-carbon atom may be accomplished and it can react as an electron acceptor. [Pg.131]

A convenient synthetic route to obtain these compounds is the thermal Diels Alder cycloaddition of 1 -methoxybutadiene (18b) with carbonyl compounds, but this route is limited to aldehydes activated by an electron-withdrawing substituent. Non-activated carbonyl compounds require drastic conditions or fail to react. Application of high pressure overcomes this limitation. [Pg.214]

The best carbonyl components for these reactions are highly electrophilic compounds such as glyocylate, pyruvate, and oxomalonate esters, as well as chlorinated and fluorinated aldehydes. Most synthetic applications of the carbonyl-ene reaction utilize Lewis acids. Although such reactions may be stepwise in character, the stereochemical outcome is often consistent with a cyclic TS. It was found, for example, that steric effects of trimethylsilyl groups provide a strong stereochemical influence.28... [Pg.871]

In synthetic applications, Li et al. examined the propargylation-allenylation of carbonyl compounds by using a variety of metals including Sn, Zn, Bi, Cd, and In.203 By using the indium-mediated allenylation reaction, Li and co-workers developed the synthesis of the antiviral, antitumor compound (+)-goniofufurone (Scheme 8.22),204 a key component isolated from the Asian trees of the genus Goniothalamus,205 and other styryl lactone derivatives (Eq. 8.80). [Pg.258]

The reaction of carbonyl compounds to olefins often yields products difficult to obtain synthetically by other routes. The excellent yields obtainable under proper conditions make this reaction of definite preparative interest. Examples of some synthetic applications of oxetane formation follow ... [Pg.100]

This chapter has introduced the aldol and related allylation reactions of carbonyl compounds, the allylation of imine compounds, and Mannich-type reactions. Double asymmetric synthesis creates two chiral centers in one step and is regarded as one of the most efficient synthetic strategies in organic synthesis. The aldol and related reactions discussed in this chapter are very important reactions in organic synthesis because the reaction products constitute the backbone of many important antibiotics, anticancer drugs, and other bioactive molecules. Indeed, study of the aldol reaction is still actively pursued in order to improve reaction conditions, enhance stereoselectivity, and widen the scope of applicability of this type of reaction. [Pg.188]

Synthetic routes to a-ketol through the reactions of an unmasked acyl anion with carbonyl compounds are not numerous. The first practical application of an acylzirconocene chloride as an unmasked acyl anion donor was reported in the reaction with aldehydes in 1998 (Scheme 5.12 and Table 5.1) [19]. [Pg.155]

The facile conversion of carbonyl groups into lactones via cyclobutanones offers many opportunities for synthetic applications considering the importance of butanol-ides in natural products synthesis. The iridoids vividly illustrate this potential. Allamandin (163) 135 c) and its dehydrated relative plumericin (164) 135 d), compounds possessing antifungal, antibacterial, and antitumor activity, pack a great deal of... [Pg.72]

Studies on the electrochemical oxidation of silyl-substituted ethers have uncovered a rich variety of synthetic application in recent years. Since acetals, the products of the anodic oxidation in the presence of alcohols, are readily hydrolyzed to carbonyl compounds, silyl-substituted ethers can be utilized as efficient precursors of carbonyl compounds. If we consider the synthetic application of the electrooxidation of silyl-substituted ethers, the first question which must be solved is how we synthesize ethers having a silyl group at the carbon adjacent to the oxygen. We can consider either the formation of the C-C bond (Scheme 15a) or the formation of the C-O bond (Scheme 15b). The formation of the C Si bond is also effective, but this method does not seem to be useful from a view point of organic synthesis because the required starting materials are carbonyl compounds. [Pg.69]

Cycloadditions and cyclization reactions are among the most important synthetic applications of donor-substituted allenes, since they result in the formation of a variety of carbocyclic and heterocyclic compounds. Early investigations of Diels-Alder reactions with alkoxyallenes demonstrated that harsh reaction conditions, e.g. high pressure, high temperature or Lewis acid promotion, are often required to afford the corresponding heterocycles in only poor to moderate yield [12b, 92-94]. Although a,/3-unsaturated carbonyl compounds have not been used extensively as heterodienes, considerable success has been achieved with activated enone 146 (Eq. 8.27) or with the electron-deficient tosylimine 148 (Eq. 8.28). Both dienes reacted under... [Pg.449]

In contrast to the rich chemistry of alkoxy- and aryloxyallenes, synthetic applications of nitrogen-substituted allenes are much less developed. Lithiation at the C-l position followed by addition of electrophiles can also be applied to nitrogen-containing allenes [10]. Some representative examples with dimethyl sulfide and carbonyl compounds are depicted in Scheme 8.73 [147, 157]. a-Hydroxy-substituted (benzotriazo-le) allenes 272 are accessible in a one-pot procedure described by Katritzky and Verin, who generated allenyl anion 271 and trapped it with carbonyl compounds to furnish products 272 [147]. The subsequent cyclization of 272 leading to dihydro-furan derivative 273 was achieved under similar conditions to those already mentioned for oxygen-substituted allenes. [Pg.471]

Abstract The basic principles of the oxidative carbonylation reaction together with its synthetic applications are reviewed. In the first section, an overview of oxidative carbonylation is presented, and the general mechanisms followed by different substrates (alkenes, dienes, allenes, alkynes, ketones, ketenes, aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, phenols, amines) leading to a variety of carbonyl compounds are discussed. The second section is focused on processes catalyzed by Pdl2-based systems, and on their ability to promote different kind of oxidative carbonylations under mild conditions to afford important carbonyl derivatives with high selectivity and efficiency. In particular, the recent developments towards the one-step synthesis of new heterocyclic derivatives are described. [Pg.244]

The oxidative carbonylation of amines to give ureas is at present one of the most attractive ways for synthesizing this very important class of carbonyl compounds via a phosgene-free approach. Ureas find extensive application as agrochemicals, dyes, antioxidants, resin precursors, synthetic intermediates (also for the production of carbamates and isocyanates), and HIV-inhibitors. Many transition metals (incuding Au [244], Co [248,253-255], Cu [242], Mn [249,256-258], Ni [259], Rh [246,247,260-262], Ru [224,260,263] and especially Pd [219,225,226,264-276], and, more recently, W [277-283]) as well as main-group elements (such as sulfur [284-286] and selenium [287— 292]) have been reported to promote the oxidative carbonylation of amines, usually under catalytic conditions. In some cases, carbamates and/or oxamides are formed as byproducts, thus lowering the selectivity of the process. [Pg.259]

The successful synthesis of 2-thienyl and substituted 2- and 3-thienyl-acetylenes in yields as high as 60-80% opened a wide variety of synthetic applications. Various addition reactions with carbonyl compounds or epoxides could be carried out with ease. Aliphatic as well as aromatic amine addition reactions, or condensation reactions with hydrazine or hydroxylamine could be easily performed. [Pg.143]

As with any modern review of the chemical Hterature, the subject discussed in this chapter touches upon topics that are the focus of related books and articles. For example, there is a well recognized tome on the 1,3-dipolar cycloaddition reaction that is an excellent introduction to the many varieties of this transformation [1]. More specific reviews involving the use of rhodium(II) in carbonyl ylide cycloadditions [2] and intramolecular 1,3-dipolar cycloaddition reactions have also appeared [3, 4]. The use of rhodium for the creation and reaction of carbenes as electrophilic species [5, 6], their use in intramolecular carbenoid reactions [7], and the formation of ylides via the reaction with heteroatoms have also been described [8]. Reviews of rhodium(II) ligand-based chemoselectivity [9], rhodium(11)-mediated macrocyclizations [10], and asymmetric rho-dium(II)-carbene transformations [11, 12] detail the multiple aspects of control and applications that make this such a powerful chemical transformation. In addition to these reviews, several books have appeared since around 1998 describing the catalytic reactions of diazo compounds [13], cycloaddition reactions in organic synthesis [14], and synthetic applications of the 1,3-dipolar cycloaddition [15]. [Pg.433]

The ability to produce 1,3-dipoles, through the rhodium-catalyzed decomposition of diazo carbonyl compounds, provides unique opportunities for the accomplishment of a variety of cycloaddition reactions, in both an intra- and intermolecular sense. These transformations are often highly regio- and diastereoselective, making them extremely powerful tools for synthetic chemistry. This is exemplified in the number of applications of this chemistry to the construction of heterocyclic and natural-product ring systems. Future developments are likely to focus on the enantioselective and combinatorial variants of these reactions. [Pg.450]

This chapter on electrophilic amination using O-substituted hydroxylamines 1-5 and oximes 7 is focused on the various methods that have been reported for the amination of carbon nucleophiles. Synthetic aspects and applications of the methods for C—N bond formation are accompanied by a brief discussion of the reaction mechanisms. The preparation of O-substituted hydroxylamines and oximes has not been considered in detail. This review covers the literature up to August 2007 and is partly based on reviews on the electrophilic amination of carbanions and a-amination of carbonyl compounds. ... [Pg.305]


See other pages where Carbonyl compounds synthetic applications is mentioned: [Pg.1968]    [Pg.74]    [Pg.685]    [Pg.877]    [Pg.122]    [Pg.685]    [Pg.877]    [Pg.390]    [Pg.1339]    [Pg.16]    [Pg.118]    [Pg.144]    [Pg.157]    [Pg.297]    [Pg.412]    [Pg.154]    [Pg.390]    [Pg.491]    [Pg.517]    [Pg.493]    [Pg.90]    [Pg.281]    [Pg.902]    [Pg.480]    [Pg.260]    [Pg.467]    [Pg.169]   
See also in sourсe #XX -- [ Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 ]




SEARCH



Synthetic applications

© 2024 chempedia.info