Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Additives aromatic amine

Antioxidant and deactivation additives substituted phenols, dithiophosphates, dithiocarbamates, alkylated aromatic amines. [Pg.279]

Certain ortho substituted derivatives of aromatic amines are difficult to acetylate under the above conditions owing to steric hindrance. The process is facilitated by the addition of a few drops of concentrated sulphuric acid (compare Section IV,47), which acts as a catalyst, and the use of a large excess of acetic anhydride. [Pg.652]

The metal coordination complexes of both sahcylaldehyde phenyhiydrazone (91) and sahcylaldoxime provide antioxidant (92) protection and uv stabihty to polyolefins (see Antioxidants). In addition, the imines resulting from the reaction of sahcylaldehyde and aromatic amines, eg, p- am in oph en o1 or a-naphthylamine, can be used at very low levels as heat stabiLizers (qv) in polyolefins (93). [Pg.508]

Environmental Impact of Ambient Ozone. Ozone can be toxic to plants, animals, and fish. The lethal dose, LD q, for albino mice is 3.8 ppmv for a 4-h exposure (156) the 96-h LC q for striped bass, channel catfish, and rainbow trout is 80, 30, and 9.3 ppb, respectively. Small, natural, and anthropogenic atmospheric ozone concentrations can increase the weathering and aging of materials such as plastics, paint, textiles, and mbber. For example, mbber is degraded by reaction of ozone with carbon—carbon double bonds of the mbber polymer, requiring the addition of aromatic amines as ozone scavengers (see Antioxidants Antiozonants). An ozone decomposing polymer (noXon) has been developed that destroys ozone in air or water (157). [Pg.504]

Aromatic amines form addition compounds and complexes with many inorganic substances, such as ziac chloride, copper chloride, uranium tetrachloride, or boron trifluoride. Various metals react with the amino group to form metal anilides and hydrochloric, sulfuric, or phosphoric acid salts of aniline are important intermediates in the dye industry. [Pg.229]

The second major route to diarylamiaes is the condensation of an aromatic amine with a phenol. Aniline [62-53-3] phenol [108-95-2] and 3.5% phosphoric acid at 325°C gives a 50% yield of DPA (23). Apparently, this reaction iavolves the addition of aniline to the keto form of the phenol. Thus, naphthols and hydroquiaone are more reactive and give higher yields of product. This is the preferred route to A/-phenyi-2-naphthyiamiQe, 4-hydroxydiphenyiamiQe, and diphenyl- -phenylenediamine (24). [Pg.244]

The addition of 2,2, 4,4, 6-pentanitro-6 -methyldiphenylamine [64653-47-0] to seawater precipitates potassium (38). Aromatic amines, especially aminotetrahydronaphthalenes and their A[-aryl derivatives, are efficient flotation agents for quartz. The use of DPA for image formation in films has been patented (39,40). Diarylamines are used as intermediates (41) for azo, sulfur, oxidative base, triaryhnethane, oxazine, nitro, and safranine dyes (see Dyes and DYE INTERLffiDIATES). [Pg.245]

Contaminants and by-products which are usually present in 2- and 4-aminophenol made by catalytic reduction can be reduced or even removed completely by a variety of procedures. These include treatment with 2-propanol (74), with aUphatic, cycloaUphatic, or aromatic ketones (75), with aromatic amines (76), with toluene or low mass alkyl acetates (77), or with phosphoric acid, hydroxyacetic acid, hydroxypropionic acid, or citric acid (78). In addition, purity may be enhanced by extraction with methylene chloride, chloroform (79), or nitrobenzene (80). [Pg.311]

To minimize the formation of fuhninating silver, these complexes should not be prepared from strongly basic suspensions of silver oxide. Highly explosive fuhninating silver, beheved to consist of either silver nitride or silver imide, may detonate spontaneously when silver oxide is heated with ammonia or when alkaline solutions of a silver—amine complex are stored. Addition of appropriate amounts of HCl to a solution of fuhninating silver renders it harmless. Stable silver complexes are also formed from many ahphatic and aromatic amines, eg, ethylamine, aniline, and pyridine. [Pg.90]

This reaction is reported to proceed at a rapid rate, with over 25% conversion in less than 0.001 s [3]. It can also proceed at very low temperatures, as in the middle of winter. Most primary substituted urea linkages, referred to as urea bonds, are more thermally stable than urethane bonds, by 20-30°C, but not in all cases. Polyamines based on aromatic amines are normally somewhat slower, especially if there are additional electron withdrawing moieties on the aromatic ring, such as chlorine or ester linkages [4]. Use of aliphatic isocyanates, such as methylene bis-4,4 -(cyclohexylisocyanate) (HnMDI), in place of MDI, has been shown to slow the gelation rate to about 60 s, with an amine chain extender present. Sterically hindered secondary amine-terminated polyols, in conjunction with certain aliphatic isocyanates, are reported to have slower gelation times, in some cases as long as 24 h [4]. [Pg.763]

Note Note that the diazotization of primary aromatic amines can also be achieved by placing the chromatogram for 3 — 5 min in a twin-trough chamber containing nitrous fumes (fume cupboard ). The fumes are produced in the empty trough of the chamber by addition of 25% hydrochloric acid to a 20% sodium nitrite solution [2, 4], iV-(l-Naphthyl)ethylenediamine can be replaced in the reagent by a- or -naphthol [10, 14], but this reduces the sensitivity of detection [2]. Spray solutions Ila and lib can also be used as dipping solutions. [Pg.225]

The Schiemann reaction seems to be the best method for the selective introduction of a fluorine substituent onto an aromatic ring. The reaction works with many aromatic amines, including condensed aromatic amines. It is however of limited synthetic importance, since the yield usually decreases with additional substituents present at the aromatic ring. [Pg.250]

The formation of the quinoline is formulated to involve a conjugate addition of the primary aromatic amine to the acrolein 6, to give a /3-arylaminoaldehyde 3 as an intermediate ... [Pg.261]

Modified PAN fibres containing aldehyde groups can be used to obtain chemically stained fibres. The chemical addition of dyes can be conducted following two schemes A) The fibres of the above composition are treated with aromatic amines, e.g., l-amino-8-hydroxynaphthalene-3,6-disulfonic acid ( H-acid ), and then azocoupling is carried out with a diazonium salt ... [Pg.104]

On the other hand, there is at least one case of an aromatic amine without a hydroxy group in the 2-position, namely 1-aminophenazine (2.29) which, after the initial diazotization, is oxidized within minutes by air or additional nitrous acid to the quinone diazide 2.31 (Olson, 1977). [Pg.27]

The catalytic efficiency increases, under comparable conditions (pH, concentration of catalyst, etc.) in the sequence Cl < Br - S(CH3)2 < SCN < SC(NH2)2 < I . Titration with a calibrated solution of NaN02 (usually 0.05 to 0.10 m) is used for the analytical determination of aromatic amines, dissolved in aqueous H2S04 or HC1. Here nucleophilic catalysis is achieved by adding KBr. This allows a titration to be completed much faster than without that addition. [Pg.56]

In addition to iV-azo coupling to form triazenes, aromatic amines (R = aryl in Scheme 13-1) also undergo C-azo coupling because they are ambidentate nucleophiles. The competition between N- and C-coupling will be discussed in Section 13.3. [Pg.388]

Primary aromatic amines (e.g., aniline) and secondary aliphatic-aromatic amines (e. g., 7V-methylaniline) usually form triazenes in coupling reactions with benzenedi-azonium salts. If the nucleophilicity of the aryl residue is increased by addition of substituents or fused rings, as in 3-methylaniline and 1- and 2-naphthylamine, aminoazo formation takes place (C-coupling). However, the possibility has also been noted that in aminoazo formation the initial attack of the diazonium ion may still be at the amine N-atom, but the aN-complex might rearrange too rapidly to allow its identification (Beranek and Vecera, 1970). [Pg.395]

Many pharmacologically active compounds have been synthesized using 5-bromoisoquinoline or 5-bromo-8-nitroisoquinoline as building blocks.6 7 8 9 10 11 The haloaromatics participate in transition-metal couplings 81012 and Grignard reactions. The readily reduced nitro group of 5-bromo-8-nitroisoquinoline provides access to an aromatic amine, one of the most versatile functional groups. In addition to N-alkylation, TV-acylation and diazotiation, the amine may be utilized to direct electrophiles into the orthoposition. [Pg.52]

The synthesis of aromatic amines is an active and important area of research.2 Many methods are available in the literature for the synthesis of these compounds. Though some of these are widely used, still they have limitations based on safety or handling considerations. For example, catalytic hydrogenation3 of nitro or azido compounds in the presence of metals such as palladium on carbon or Raney nickel require stringent precautions because of their flammable nature in the presence of air. In addition, these methods require compressed hydrogen gas and a vacuum pump to create high pressure within the reaction flask. To overcome these difficulties, several new methods have been reported in the... [Pg.98]

Our recent studies on effective bromination and oxidation using benzyltrimethylammonium tribromide (BTMA Br3), stable solid, are described. Those involve electrophilic bromination of aromatic compounds such as phenols, aromatic amines, aromatic ethers, acetanilides, arenes, and thiophene, a-bromination of arenes and acetophenones, and also bromo-addition to alkenes by the use of BTMA Br3. Furthermore, oxidation of alcohols, ethers, 1,4-benzenediols, hindered phenols, primary amines, hydrazo compounds, sulfides, and thiols, haloform reaction of methylketones, N-bromination of amides, Hofmann degradation of amides, and preparation of acylureas and carbamates by the use of BTMA Br3 are also presented. [Pg.29]

Reduction of the aromatic amine (15) is the usual source of (14), and reductive amination of (16) gives (15). There are many published routes to (15) of which addition of an activating group (17) is probably easiest on a large scale. You may also have considered using nitro compound (18) or epoxide (19). [Pg.425]

Although several methods are used to aminate heterocyclic aromatic hydroxy-N-heterocycles [36], some additional, special, amination procedures are used for nucleoside modification. When we planned to synthesize a series of N -substituted cytidines 5 starting from uridine 1 we considered known classical methods, which imply (Scheme 4.14) ... [Pg.50]

Subsequently, the scope of the reaction was extended to N-nucleophiles 82. Because the inherent basicity of the substitution products 83 imposed some problems concerning catalyst decomposition, the addition of catalytic amoimts of piperidine hydrochloride (pip-HCl) proved to be necessary. Under optimized reaction conditions different aromatic amines 82 were allylated with almost exclusive regioselectivites in favor of the ipso substitution products 83 (eq. 1 in Scheme 20) [64]. [Pg.197]

Although the possibility of bioremediation of sites contaminated with nitrotoluene waste is clearly possible, important issues should be clearly appreciated. These include (a) additional carbon sources may be necessary to accomplish partial or complete reduction of nitro groups, (b) under aerobic conditions, dimeric azo compounds may be formed as terminal metabolites, and (c) aromatic amines may be incorporated into humic material by covalent bonding and thereby resist further degradation. [Pg.677]


See other pages where Additives aromatic amine is mentioned: [Pg.370]    [Pg.370]    [Pg.529]    [Pg.233]    [Pg.379]    [Pg.233]    [Pg.426]    [Pg.292]    [Pg.544]    [Pg.135]    [Pg.371]    [Pg.57]    [Pg.318]    [Pg.202]    [Pg.262]    [Pg.243]    [Pg.331]    [Pg.120]    [Pg.185]    [Pg.54]    [Pg.104]    [Pg.724]    [Pg.662]    [Pg.431]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Addition aromatics

Additives, 423 Amines

Aromatic amination

Aromatic amines

Aromatics amination

© 2024 chempedia.info