Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonation aqueous solution process

Supercritical Extraction. The use of a supercritical fluid such as carbon dioxide as extractant is growing in industrial importance, particularly in the food-related industries. The advantages of supercritical fluids (qv) as extractants include favorable solubiHty and transport properties, and the abiHty to complete an extraction rapidly at moderate temperature. Whereas most of the supercritical extraction processes are soHd—Hquid extractions, some Hquid—Hquid extractions are of commercial interest also. For example, the removal of ethanol from dilute aqueous solutions using Hquid carbon dioxide... [Pg.70]

In aqueous solution, malic acid can be mildly corrosive toward aluminum and corrosive to carbon steel. Under normal conditions, it is not corrosive to stainless steels, which usually are the constmetion materials for processes involving malic acid. Malic acid is also virtually noncorrosive to tinplate and other materials used to package acidulated foods and beverages (Table 3) (27). [Pg.522]

Re OPe . The final step in the chemical processing of rare earths depends on the intended use of the product. Rare-earth chlorides, usually electrolytically reduced to the metallic form for use in metallurgy, are obtained by crystallisation of aqueous chloride solutions. Rare-earth fluorides, used for electrolytic or metaHothermic reduction, are obtained by precipitation with hydrofluoric acid. Rare-earth oxides are obtained by firing hydroxides, carbonates or oxalates, first precipitated from the aqueous solution, at 900°C. [Pg.546]

Hydrogen sulfide, H2S, is removed by a variety of processes, of which one is a regenerative solution process using aqueous solutions of sodium hydroxide, NaOH, calcium hydroxide, Ca(OH)2, sodium phosphate, Na PO, and sodium carbonate, Na2C02. [Pg.208]

One of the principal aspects of refinery gas cleanup is the removal of acid gas constituents, ie, carbon dioxide, CO2, and hydrogen sulfide, H2S. Treatment of natural gas to remove the acid gas constituents is most often accompHshed by contacting the natural gas with an alkaline solution. The most commonly used treating solutions are aqueous solutions of the ethanolamines or alkah carbonates. There are several hydrogen sulfide removal processes (29), most of which are followed by a Claus plant that produces elemental sulfur from the hydrogen sulfide. [Pg.209]

A.lkanolamine Process. Carbon dioxide is an acidic gas that reacts reversibly with aqueous alkaline solution to form a carbonate adduct. This adduct decomposes upon the addition of low level heat faciUtating CO2 removal. An aqueous solution of 15—20 wt % monoethanolamine (MEA) was the standard method for removing CO2 in early ammonia plants. [Pg.349]

When the Claus reaction is carried out in aqueous solution, the chemistry is complex and involves polythionic acid intermediates (105,211). A modification of the Claus process (by Shell) uses hydrogen or a mixture of hydrogen and carbon monoxide to reduce sulfur dioxide, carbonyl sulfide, carbon disulfide, and sulfur mixtures that occur in Claus process off-gases to hydrogen sulfide over a cobalt molybdate catalyst at ca 300°C (230). [Pg.144]

Allied-Signal Process. Cyclohexanone [108-94-1] is produced in 98% yield at 95% conversion by liquid-phase catal57tic hydrogenation of phenol. Hydroxylamine sulfate is produced in aqueous solution by the conventional Raschig process, wherein NO from the catalytic air oxidation of ammonia is absorbed in ammonium carbonate solution as ammonium nitrite (eq. 1). The latter is reduced with sulfur dioxide to hydroxylamine disulfonate (eq. 2), which is hydrolyzed to acidic hydroxylamine sulfate solution (eq. 3). [Pg.429]

GirhotolAmine Process. This process developed by the Girdler Corporation is similar in operation to the alkali carbonate processes. However, it uses aqueous solutions of an ethanolamine, ie, either mono-, di-, or triethanolamine. The operation of the Girbotol process depends on the reversible nature of the reaction of CO2 with monoetbanolamine [141-43-5] to form monoethanolamine carbonate [21829-52-7]. [Pg.22]

Potassium Permanganate. Probably the most widely used process for removing traces of hydrogen sulfide from carbon dioxide is to scmb the gas with an aqueous solution saturated with potassium permanganate [7722-64-7]. Sodium carbonate is added to the solution as buffer. The reaction is as foUows ... [Pg.22]

Developing agents must also be soluble in the aqueous alkaline processing solutions. Typically such solutions are maintained at about pH 10 by the presence of a carbonate buffer. Other buffers used include borate and, less frequendy, phosphate. Developer solubiUty can be enhanced by the presence of hydroxyl or sulfonamide groups, usually in the A/-alkyl substituent. The solubilization also serves to reduce developer allergenicity by reducing partitioning into the lipophilic phase of the skin (46). [Pg.473]

Carbon steel is easily the most commonly used material in process plants despite its somewhat limited corrosion resistance. It is routinely used for most organic chemicals and neutral or basic aqueous solutions at moderate temperatures. It is also used routinely for the storage of concentrated sulfuric acid and caustic soda [up to 50 percent and 55°C (I30°F)]. Because of its availability, low cost, and ease of fabrication steel is frequently used in services with corrosion rates of 0.13 to 0.5 mm/y (5 to 20 mils/y), with added thickness (corrosion allowance) to assure the achievement of desired service life. Product quahty requirements must be considered in such cases. [Pg.2443]

Strong acids in aqueous solution convert allenes to ketones via an enol intermediate. This process also involves protonation at a terminal carbon. [Pg.377]

An example of a process using O2 to oxidize HiS is the Stretford process, which is licensed by the British Gas Corporation. In this process the gas stream is washed with an aqueous solution of sodium carbonate, sodium vanadate, and anthraquinone disulfonic acid. Figure 7-9 shows a simplified process diagram of the process. [Pg.175]

In aqueous solutions, the prevailing process is the primary attack of the unsubstituted nitrogen atom of alkylhydrazines at the terminal carbon atom of diacetylene with predominant formation of l-alkyl-5-methylpyrazoles (18) (73DIS). The content of isomeric l-alkyl-3-methylpyrazoles is less than 10% (GLC). In the authors opinion, this different direction of the attack at diacetylene in aqueous media is related to the hydration of alkylhydrazines and the formation of ammonium base RN" H2(0H) NH2, in which the primary amino group becomes the major nucleophilic center. [Pg.165]

Tellurium and cadmium Electrodeposition of Te has been reported [33] in basic chloroaluminates the element is formed from the [TeCl ] complex in one four-electron reduction step, furthermore, metallic Te can be reduced to Te species. Electrodeposition of the element on glassy carbon involves three-dimensional nucleation. A systematic study of the electrodeposition in different ionic liquids would be of interest because - as with InSb - a defined codeposition with cadmium could produce the direct semiconductor CdTe. Although this semiconductor can be deposited from aqueous solutions in a layer-by-layer process [34], variation of the temperature over a wide range would be interesting since the grain sizes and the kinetics of the reaction would be influenced. [Pg.301]

In a typical process, potassium permanganate is used to treat the cracked liquor exiting the depolymerization plant without any pH adjustment. The liquor is usually acidic because it contains some of the phosphoric acid depolymerization catalyst. The KM11O4 treatment is followed by treatment of the CL aqueous solution with carbon followed by filtration. Next the filtered 20-30% CL aqueous solution is concentrated to 70% and the pH is adjusted to 9-10 by addition of sodium hydroxide. The caprolactam alkaline concentrate is treated widi KMn04 followed by distillation under reduced pressure to remove water and low-boiling impurities. [Pg.541]

Also, the CL aqueous solution may be hydrogenated at 60°C in the presence of 20% sodium hydroxide and 50% palladium absorbed on carbon to provide caprolactam of very high purity after distillation. Treatment with an ion exchange resin before or after the oxidation or hydrogenation process also improves the quality of the CL obtained after distillation. CL has also been purified by treatment with alkali and formaldehyde followed by fractional distillation to remove aromatic amines and other products. [Pg.541]

The most important type of mixed solution is a buffer, a solution in which the pH resists change when small amounts of strong acids or bases are added. Buffers are used to calibrate pH meters, to culture bacteria, and to control the pH of solutions in which chemical reactions are taking place. They are also administered intravenously to hospital patients. Human blood plasma is buffered to pH = 7.4 the ocean is buffered to about pH = 8.4 by a complex buffering process that depends on the presence of hydrogen carbonates and silicates. A buffer consists of an aqueous solution of a weak acid and its conjugate base supplied as a salt, or a weak base and its conjugate acid supplied as a salt. Examples are a solution of acetic acid and sodium acetate and a solution of ammonia and ammonium chloride. [Pg.566]


See other pages where Carbonation aqueous solution process is mentioned: [Pg.597]    [Pg.443]    [Pg.108]    [Pg.18]    [Pg.128]    [Pg.165]    [Pg.219]    [Pg.514]    [Pg.522]    [Pg.556]    [Pg.145]    [Pg.172]    [Pg.399]    [Pg.478]    [Pg.523]    [Pg.176]    [Pg.210]    [Pg.214]    [Pg.216]    [Pg.468]    [Pg.90]    [Pg.183]    [Pg.6]    [Pg.374]    [Pg.524]    [Pg.1599]    [Pg.297]    [Pg.541]    [Pg.541]    [Pg.566]    [Pg.635]    [Pg.358]   
See also in sourсe #XX -- [ Pg.369 ]




SEARCH



Aqueous Carbonate process

Aqueous Solution Processes

Aqueous solution-processed

Carbon-1 3 solution

Carbonate Solution

Carbonation process

Carbonization process

Process carbonate

Solute process

Solution processability

Solution processes

Solution processing

Solutizer process

© 2024 chempedia.info