Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonaceous, generally

Generally, cmde sulfur contains small percentages of carbonaceous matter. The amount of this impurity is usually determined by combustion, which requires an exacting technique. The carbonaceous matter is oxidized to carbon dioxide and water the carbon dioxide is subsequently absorbed (18). Automated, on-stream determination of impurities in molten sulfur has been accompHshed by infrared spectrophotometry (35). [Pg.124]

Property Modifiers. Property modifiers can, in general, be divided into two classes nonabrasive and abrasive, and the nonabrasive modifiers can be further classified as high friction or low friction. The most frequently used nonabrasive modifier is a cured resinous friction dust derived from cashew nutshell Hquid (see Nuts). Ground mbber is used in particle sizes similar to or slightly coarser than those of the cashew friction dusts for noise, wear, and abrasion control. Carbon black (qv), petroleum coke flour, natural and synthetic graphite, or other carbonaceous materials (see Carbon) are used to control the friction and improve wear, when abrasives are used, or to reduce noise. The above mentioned modifiers are primarily used in organic and semimetallic materials, except for graphite which is used in all friction materials. [Pg.274]

This is the reverse of the water-gas shift reaction in the production of hydrogen and ammonia (qv). Carbon dioxide may also be reduced catalyticaHy with various hydrocarbons and with carbon itself at elevated temperatures. The latter reaction occurs in almost all cases of combustion of carbonaceous fuels and is generally employed as a method of producing carbon monoxide. [Pg.19]

The buildup of carbonaceous materials in the sulfuric acid presents one of the most serious problems of acid concentration (76—80). Acid concentration also presents a corrosion problem. The vessels are mild steel lined with lead or brick the steam heating elements are composed of siUcon, iron, or tantalum, and pipelines are generally constmcted of lead (81). [Pg.404]

Coke Coke is the solid, cellular, infusible material remaining after the carbonization of coal, pitch, petroleum residues, and certain other carbonaceous materials. The varieties of coke generally are identified by prefixing a word to indicate the source, if other than coal, (e.g., petroleum coke) or the process by which a coke is manufactured (e.g., oven coke). [Pg.2360]

The sotrace elements, such as boron, cobalt, iron,copper, zinc, manganese, chromium, molybdenum and still others may also be used to advantage. Generally, these trace elements occur in sufficient quantities in the carbonaceous and nitrogenous constituents of the medium, particularly if derived from natural sources, or in the tap water, and the addition of further quantities of these trace elements may consequently be unnecessary. [Pg.1062]

As a starting point, the book reviews the general properties of the raw materials. This is followed by the different techniques used to convert these raw materials to the intermediates, which are further reacted to produce the petrochemicals. The first chapter deals with the composition and the treatment techniques of natural gas. It also reviews the properties, composition, and classification of various crude oils. Properties of some naturally occurring carbonaceous substances such as coal and tar sand are briefly noted at the end of the chapter. These materials are targeted as future energy and chemical sources when oil and natural gas are depleted. Chapter 2 summarizes the important properties of hydrocarbon intermediates and petroleum fractions obtained from natural gas and crude oils. [Pg.403]

One area of cat cracking not fully understood is the proper determination of carbon residue of the feed and how it affects the unit s coke make. Carbon residue is defined as the carbonaceous residue formed after thermal destruction of a sample. Cat crackers are generally limited in coke burn capacity, therefore, the inclusion of residue in the feed produces more coke and forces a reduction in FCC throughput. Conventional gas oil feeds generally have a carbon residue less than 0,5 wt for feeds containing resid, the number can be as high as 15 wt lf. [Pg.52]

Groundbeds consist of a carbonaceous extender generally coke breeze and graphite, silicon-iron scrap steel, platinised titanium or niobium anodes. [Pg.163]

The chemical composition of the SEI formed on carbonaceous anodes is, in general, similar to that formed on metallic lithium or inert electrodes. However some differences are expected as a result of the variety of chemical compositions and morphologies of carbon surfaces, each of which can affect the i() value for the various reduction reactions differently. Another factor, when dealing with graphite, is solvent co-intercalation. Assuming Li2C03 to be a major SEI building material, the thickness of the SEI was estimated to be about 45 A [711. [Pg.439]

It is well known today that the SEI on both lithium and carbonaceous electrodes consists of many different materials including LiF, Li2C03, LiC02R, Li20, lithium alkoxides, nonconductive polymers, and more. These materials form simultaneously and precipitate on the electrode as a mosaic of microphases [5, 6], These phases may, under certain conditions, form separate layers, but in general it is more appropriate to treat them as het-eropolymicrophases. We believe that Fig. 13(a) is the most accurate representation of the SEI. [Pg.444]

Great promise exists in the use of graphitic carbons in the electrochemical synthesis of hydrogen peroxide [reaction (15.21)] and in the electrochemical reduction of carbon dioxide to various organic products. Considering the diversity in structures and surface forms of carbonaceous materials, it is difficult to formulate generalizations as to the influence of their chemical and electron structure on the kinetics and mechanism of electrochemical reactions occurring at carbon electrodes. [Pg.543]


See other pages where Carbonaceous, generally is mentioned: [Pg.600]    [Pg.218]    [Pg.252]    [Pg.377]    [Pg.467]    [Pg.476]    [Pg.123]    [Pg.45]    [Pg.247]    [Pg.165]    [Pg.206]    [Pg.402]    [Pg.495]    [Pg.498]    [Pg.577]    [Pg.145]    [Pg.296]    [Pg.181]    [Pg.15]    [Pg.13]    [Pg.129]    [Pg.160]    [Pg.406]    [Pg.504]    [Pg.358]    [Pg.235]    [Pg.324]    [Pg.362]    [Pg.297]    [Pg.78]    [Pg.108]    [Pg.199]    [Pg.213]    [Pg.165]    [Pg.90]    [Pg.190]    [Pg.1039]    [Pg.443]   


SEARCH



Carbonaceous

© 2024 chempedia.info