Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon tetrachloride, properties

Physical Properties. All heavier than, and insoluble in water. All liquids, except iodoform, CHI3, which is a yellow crystalline solid with a characteristic odour. The remainder are colourless liquids when pure ethyl iodide, CjHjI, and iodobenzene, CjHgl, are, however, usually yellow or even brown in colour. Methyl iodide, CH3I, ethyl bromide, CgH Br, ethyl iodide, chloroform, CHCI3, and carbon tetrachloride, CCI4, have sweetish odours, that of chloroform being particularly characteristic. [Pg.390]

Iodine is a bluish-black, lustrous solid, volatizing at ordinary temperatures into a blue-violet gas with an irritating odor it forms compounds with many elements, but is less active than the other halogens, which displace it from iodides. Iodine exhibits some metallic-like properties. It dissolves readily in chloroform, carbon tetrachloride, or carbon disulfide to form beautiful purple solutions. It is only slightly soluble in water. [Pg.122]

Other procedures have also been reported (38,110,111). The properties and chemistry of 9-BBN have been reviewed (112). The reagent is a white crystalline soHd, stable indefinitely at room temperature, soluble in hexane, carbon tetrachloride, benzene, tetrahydrofuran, and diethyl ether. It exists as a... [Pg.310]

Styrene is a colorless Hquid with an aromatic odor. Important physical properties of styrene are shown in Table 1 (1). Styrene is infinitely soluble in acetone, carbon tetrachloride, benzene, ether, / -heptane, and ethanol. Nearly all of the commercial styrene is consumed in polymerization and copolymerization processes. Common methods in plastics technology such as mass, suspension, solution, and emulsion polymerization can be used to manufacture polystyrene and styrene copolymers with different physical characteristics, but processes relating to the first two methods account for most of the styrene polymers currendy (ca 1996) being manufactured (2—8). Polymerization generally takes place by free-radical reactions initiated thermally or catalyticaHy. Polymerization occurs slowly even at ambient temperatures. It can be retarded by inhibitors. [Pg.476]

With minor exceptions the requirements for the physical and chemical properties of asphalt were essentially the same for the three national specifications and included penetration and ductiUty at 25 °C flash point % loss at 163 °C penetration of residue as a % of original solubiUty in carbon disulfide solubiUty in carbon tetrachloride specific gravity at 25°C and softening point. [Pg.370]

Butadiene is a noncorrosive, colorless, flammable gas at room temperature and atmospheric pressure. It has a mildly aromatic odor. It is sparingly soluble in water, slightly soluble in methanol and ethanol, and soluble in organic solvents like diethyl ether, ben2ene, and carbon tetrachloride. Its important physical properties are summarized in Table 1 (see also references 11, 12). 1,2-Butadiene is much less studied. It is a flammable gas at ambient conditions. Some of its properties are summarized in Table 2. [Pg.340]

Analysis. Butenes are best characterized by their property of decolorizing both a solution of bromine in carbon tetrachloride and a cold, dilute, neutral permanganate solution (the Baeyer test). A solution of bromine in carbon tetrachloride is red the dihaUde, like the butenes, are colorless. Decoloration of the bromine solution is rapid. In the Baeyer test, a purple color is replaced by brown manganese oxide (a precipitate) and a colorless diol. These tests apply to all alkenes. [Pg.369]

The physical properties of carbon tetrachloride are Hsted in Tables 1 and 2. [Pg.529]

Carbon tetrachloride is the oldest and was the most extensively used chlorinated solvent in degreasing and dry-cleaning operations for many years. Consequently, its narcotic and toxic properties have been the subject of much investigation. Carefiil investigations have repeatedly shown carbon tetrachloride to be one of the most harm fill of the common solvents (37). [Pg.532]

Physical properties of hexachloroethane are Hsted in Table 11. Hexachloroethane is thermally cracked in the gaseous phase at 400—500°C to give tetrachloroethylene, carbon tetrachloride, and chlorine (140). The thermal decomposition may occur by means of radical-chain mechanism involving -C,C1 -C1, or CCl radicals. The decomposition is inhibited by traces of nitric oxide. Powdered 2inc reacts violentiy with hexachloroethane in alcohoHc solutions to give the metal chloride and tetrachloroethylene aluminum gives a less violent reaction (141). Hexachloroethane is unreactive with aqueous alkali and acid at moderate temperatures. However, when heated with soHd caustic above 200°C or with alcohoHc alkaHs at 100°C, decomposition to oxaHc acid takes place. [Pg.15]

AHyl chloride is a colorless Hquid with a disagreeable, pungent odor. Although miscible in typical compounds such as alcohol, chloroform, ether, acetone, benzene, carbon tetrachloride, heptane, toluene, and acetone, aHyl chloride is only slightly soluble in water (21—23). Other physical properties are given in Table 1. [Pg.32]

TABLE 2-244 Thermophysical Properties of Saturated Carbon Tetrachloride... [Pg.271]

Chloroform, CHCla, is an example of a polar molecule. It has the same bond angles as methane, CH4, and carbon tetrachloride, CCLi- Carbon, with sp3 bonding, forms four tetrahedrally oriented bonds (as in Figure 16-11). However, the cancellation of the electric dipoles of the four C—Cl bonds in CCL does not occur when one of the chlorine atoms is replaced by a hydrogen atom. There is, then, a molecular dipole remaining. The effects of such electric dipoles are important to chemists because they affect chemical properties. We shall examine one of these, solvent action. [Pg.312]

Structure of luciferin (Ohtsuka et al., 1976). The luciferin of Diplocardia longa is a colorless liquid, and fairly stable at room temperature. It is soluble in polar organic solvents (methanol, ethanol, acetone, and methyl acetate) but insoluble in nonpolar solvents like hexane and carbon tetrachloride. Based on the chemical properties and spectroscopic data, the following chemical structure was assigned to the luciferin. [Pg.238]

The spectral properties of the product are as follows infrared (neat) cm.-1 3268, 1377, 1037 proton magnetic resonance (carbon tetrachloride) d, multiplicity, number of protons 0.88 (multiplet, 6), 1.38 (multiplet, 7), 3.33 (unresolved doublet, 2), 5.14 (broad singlet, 1). [Pg.2]

The checkers found that a fraction, b.p. 45-71° (18 mm.), had the following spectral properties infrared (carbon tetrachloride) no absorption in the 3300-1600 cm.-1 region attributable to OH, C=0, or C=C vibrations proton magnetic resonance (chloroform-d) <5, multiplicity, number of protons, assignment 3.1-4.2 (multiplet, 4, CH—Cl, CH—O, and C//2—O), 1.0-2.5 (multiplet, 7, GH3 and 2 x C//2)-Thin layer chromatographic analysis of this fraction on silica gel plates using chloroform as eluent indicated the presence of a major component (the cis- and fraus-isomers), Rf = 0.60, and a minor unidentified component, Rf = 0.14. [Pg.65]


See other pages where Carbon tetrachloride, properties is mentioned: [Pg.370]    [Pg.149]    [Pg.248]    [Pg.297]    [Pg.307]    [Pg.207]    [Pg.311]    [Pg.332]    [Pg.131]    [Pg.26]    [Pg.529]    [Pg.211]    [Pg.313]    [Pg.331]    [Pg.9]    [Pg.60]    [Pg.61]    [Pg.66]    [Pg.92]    [Pg.109]    [Pg.125]    [Pg.526]    [Pg.10]    [Pg.16]    [Pg.32]    [Pg.45]    [Pg.182]    [Pg.195]    [Pg.149]    [Pg.67]    [Pg.70]   
See also in sourсe #XX -- [ Pg.67 , Pg.87 , Pg.90 ]

See also in sourсe #XX -- [ Pg.434 ]




SEARCH



Carbon properties

Carbon tetrachlorid

Carbon tetrachloride

Carbonates properties

© 2024 chempedia.info