Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon tetrachloride formation

The second example also involves catalysts development. The goal of this project, headed by Leo E. Manzer and Walter Cicha at the DuPont Central Research Station, was charged with developing a new highly selective catalyst for the manufacture of phosgene while reducing the amount of the undesired by-product, carbon tetrachloride. As a result of basic studies by the DuPont catalysts research team, it was recognized that carbon tetrachloride formation arose from chlorination of the carbon catalyst that is used in the commercial process to promote the reaction of carbon monoxide and chlorine. [Pg.66]

A novel ring contraction of 4,6-dihydro-3,7-diphenyl-5-(4-methylphenylsulfonyl)-l,2,5-triazepine (135, X = NTs) occurs under specific, monochlorination conditions <85H(23)1675>. An excess of chlorine or sulfuryl chloride in dichloromethane leads to the dichlorotriazepine derivative (136), but with one equivalent of sulfuryl chloride in dichloromethane, or one equivalent of NBS in carbon tetrachloride, formation of the dichlorotriazepine is minimized and up to 86% of4-tosylamino-3,6-diphenylpyridazine (137) is produced (Scheme 106). In polar solvents other, 5-membered ring, products are produced. Thermal decomposition of a series of 3,6-diaryl-2,7-dihydro-l,4,5-thia-diazepines (135, X = S) gave 3,6-disubstituted pyridazines in high yield <89BCJ2608>. [Pg.74]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]

The zeroth-order rates of nitration depend on a process, the heterolysis of nitric acid, which, whatever its details, must generate ions from neutral molecules. Such a process will be accelerated by an increase in the polarity of the medium such as would be produced by an increase in the concentration of nitric acid. In the case of nitration in carbon tetrachloride, where the concentration of nitric acid used was very much smaller than in the other solvents (table 3.1), the zeroth-order rate of nitration depended on the concentrationof nitric acid approximately to the fifth power. It is argued therefore that five molecules of nitric acid are associated with a pre-equilibrium step or are present in the transition state. Since nitric acid is evidently not much associated in carbon tetrachloride a scheme for nitronium ion formation might be as follows ... [Pg.38]

The heats of formation of Tt-complexes are small thus, — A//2soc for complexes of benzene and mesitylene with iodine in carbon tetrachloride are 5-5 and i2-o kj mol , respectively. Although substituent effects which increase the rates of electrophilic substitutions also increase the stabilities of the 7r-complexes, these effects are very much weaker in the latter circumstances than in the former the heats of formation just quoted should be compared with the relative rates of chlorination and bromination of benzene and mesitylene (i 3 o6 x 10 and i a-Sq x 10 , respectively, in acetic acid at 25 °C). [Pg.117]

Acid Chloride Formation. Monoacid chlorides of maleic and fumaric acid are not known. Treatment of maleic anhydride or maleic acid with various reagents such as phosgene [75-44-5] (qv), phthaloyl chloride [88-95-9] phosphoms pentachloride [10026-13-8] or thionyl chloride [7719-09-7] gives 5,5-dichloro-2(5JT)furanone [133565-92-1] (4) (26). Similar conditions convert fumaric acid to fumaryl chloride [627-63-4] (5) (26,27). NoncycHc maleyl chloride [22542-53-6] (6) forms in 11% yield at 220°C in the reaction of one mole of maleic anhydride with six moles of carbon tetrachloride [56-23-5] over an activated carbon [7440-44-4] catalyst (28). [Pg.449]

Aluminum chloride dissolves readily in chlorinated solvents such as chloroform, methylene chloride, and carbon tetrachloride. In polar aprotic solvents, such as acetonitrile, ethyl ether, anisole, nitromethane, and nitrobenzene, it dissolves forming a complex with the solvent. The catalytic activity of aluminum chloride is moderated by these complexes. Anhydrous aluminum chloride reacts vigorously with most protic solvents, such as water and alcohols. The ability to catalyze alkylation reactions is lost by complexing aluminum chloride with these protic solvents. However, small amounts of these "procatalysts" can promote the formation of catalyticaHy active aluminum chloride complexes. [Pg.147]

The solubihty of sulfur dichloride ia water is not meaningflil because it reacts rapidly. It is slightly soluble ia aUphatic hydrocarbons and very soluble ia benzene and carbon tetrachloride. The heat of formation is —22 kJ/mol (—5.3 kcal/mol) for the gas at 25°C (138). [Pg.139]

Chlorinated by-products of ethylene oxychlorination typically include 1,1,2-trichloroethane chloral [75-87-6] (trichloroacetaldehyde) trichloroethylene [7901-6]-, 1,1-dichloroethane cis- and /n j -l,2-dichloroethylenes [156-59-2 and 156-60-5]-, 1,1-dichloroethylene [75-35-4] (vinyhdene chloride) 2-chloroethanol [107-07-3]-, ethyl chloride vinyl chloride mono-, di-, tri-, and tetrachloromethanes (methyl chloride [74-87-3], methylene chloride [75-09-2], chloroform, and carbon tetrachloride [56-23-5])-, and higher boiling compounds. The production of these compounds should be minimized to lower raw material costs, lessen the task of EDC purification, prevent fouling in the pyrolysis reactor, and minimize by-product handling and disposal. Of particular concern is chloral, because it polymerizes in the presence of strong acids. Chloral must be removed to prevent the formation of soflds which can foul and clog operating lines and controls (78). [Pg.418]

By-products from EDC pyrolysis typically include acetjiene, ethylene, methyl chloride, ethyl chloride, 1,3-butadiene, vinylacetylene, benzene, chloroprene, vinyUdene chloride, 1,1-dichloroethane, chloroform, carbon tetrachloride, 1,1,1-trichloroethane [71-55-6] and other chlorinated hydrocarbons (78). Most of these impurities remain with the unconverted EDC, and are subsequendy removed in EDC purification as light and heavy ends. The lightest compounds, ethylene and acetylene, are taken off with the HCl and end up in the oxychlorination reactor feed. The acetylene can be selectively hydrogenated to ethylene. The compounds that have boiling points near that of vinyl chloride, ie, methyl chloride and 1,3-butadiene, will codistiU with the vinyl chloride product. Chlorine or carbon tetrachloride addition to the pyrolysis reactor feed has been used to suppress methyl chloride formation, whereas 1,3-butadiene, which interferes with PVC polymerization, can be removed by treatment with chlorine or HCl, or by selective hydrogenation. [Pg.419]

Many reagents are able to chlorinate aromatic pyrazole derivatives chlorine-water, chlorine in carbon tetrachloride, hypochlorous acid, chlorine in acetic acid (one of the best experimental procedures), hydrochloric acid and hydrogen peroxide in acetic acid, sulfuryl chloride (another useful procedure), etc. iV-Unsubstituted pyrazoles are often used as silver salts. When methyl groups are present they are sometimes chlorinated yielding CCI3 groups. Formation of dimers and trimers (308 R = C1) has also been observed. [Pg.240]

Any great excess of chlorine should be avoided as it favors the formation of carbon tetrachloride. Practically as good yields have been obtained by using only about three-quarters the amount of chlorine indicated. [Pg.90]

The relative basicity of carbonyl oxygen atoms can be measured by studying strength of hydrogen bonding between the carbonyl compound and a hydrogen donor such as phenol. In carbon tetrachloride, values of for 1 1 complex formation for the compounds shown have been measured. Rationalize the observed order of basicity. [Pg.545]

Obtain the TLVs for the following chemicals carbon tetrachloride, chlorobenzene, iodine, ethyl formate, phenol, methanol, and MEK (methyl ethyl ketone). Rank these in order of greatest health risk. Here s a chance for you to become acquainted with some of the Web sites referred to earlier. [Pg.187]

A 20) oiefin Formation via Enol Acetates and Ozonolysis A stock solution of acetylating mixture is prepared by dissolving 0.2 ml of 70-72% perchloric acid in 5 ml of acetic anhydride. To a solution of 5 g of 3a,6a-diacetoxy-5jff-pregnan-20-one in 50 ml of carbon tetrachloride is added 5 ml of the above stock perchloric acid-acetic anhydride solution and the mixture is allowed to stand at room temperature for 1.25 hr. The mixture is... [Pg.159]

In a modified procedure the free carboxylic acid is treated with a mixture of mercuric oxide and bromine in carbon tetrachloride the otherwise necessary purification of the silver salt is thereby avoided. This procedure has been used in the first synthesis of [1.1.1 ]propellane 10. Bicyclo[l.l.l]pentane-l,3-dicarboxylic acid 8 has been converted to the dibromide 9 by the modified Hunsdiecker reaction. Treatment of 9 with t-butyllithium then resulted in a debromination and formation of the central carbon-carbon bond thus generating the propellane 10." ... [Pg.168]

The free-radical chain reaction may also be terminated by coupling of two carbon-radical species. As solvent carbon tetrachloride is commonly used, where the A-bromosuccinimide is badly soluble. Progress of reaction is then indicated by the decrease of the amount of precipitated NBS and the formation of the succinimide that floats on the surface of the organic liquid layer. [Pg.300]

Gases or vapors that in concentrations of about 2-2 Vj % for durations of exposure of about 1 hr are lethal or produce serious injury. Carbon tetrachloride Chloroform Methyl formate... [Pg.320]

Despite several attractive features in this method of direct halogen introduction and the obvious applications in the synthesis of deoxy sugars, its uses have not been further exploited by other groups of workers. Some new related methods have become available which reportedly eliminate the difficulties previously encountered such as rearrangement, unreactivity due to steric hindrance, and phosphonate ester formation. The reaction is based on the observation (28) that triethylphosphine reacts with ethanol and carbon tetrachloride to give ethyl chloride, chloroform, and triethylphosphite. In a new adaptation (76, 77) of this... [Pg.185]

It is necessary to allow the reaction to start before packing in an ice-salt mixture. If the temperature is too low (below io°) the reaction does not start. After the reaction has started, the cooling should be as efficient as possible so that the mixture of benzene and carbon tetrachloride may be added in the minimum amount of time.. If the temperature drops below 50 the reaction is too slow. If the temperature goes above io° there is increasing formation of tarry matter and lowering of the yield. [Pg.29]

Braverman and Reisman111 have found that addition of a carbon tetrachloride solution of bromine to bis-y,y-dimethylallenyl sulfone 20 at room temperature unexpectedly resulted in spontaneous and quantitative fragmentation of the sulfone, with formation of the cyclic a, /3-unsaturated sulfmate (y-sultine) 43a and the tribromo products 44 and 45 (equation 38). Analogously, treatment of the same sulfone with trifluoroacetic acid gives rise to y-sultine 43b. It is interesting to note that from a synthetic point of view it is not even necessary to prepare the diallenyl sulfone 20, since one can use its sulfinate precursor (equation 24) to obtain exactly the same results, under the same conditions. The authors suggested that the fragmentation-cyclization of sulfone 20 may take place by the mechanism depicted in equation 39. [Pg.683]


See other pages where Carbon tetrachloride formation is mentioned: [Pg.103]    [Pg.103]    [Pg.143]    [Pg.1144]    [Pg.35]    [Pg.88]    [Pg.116]    [Pg.270]    [Pg.360]    [Pg.406]    [Pg.176]    [Pg.27]    [Pg.110]    [Pg.530]    [Pg.241]    [Pg.447]    [Pg.572]    [Pg.285]    [Pg.117]    [Pg.383]    [Pg.339]    [Pg.11]    [Pg.101]    [Pg.109]    [Pg.123]    [Pg.382]    [Pg.244]    [Pg.277]    [Pg.545]   
See also in sourсe #XX -- [ Pg.929 ]




SEARCH



Carbon tetrachlorid

Carbon tetrachloride

© 2024 chempedia.info