Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon naphthalene

For solid samples dispersed in a KBr disc which have a thickness that cannot be precisely measured, an internal standard is used (e.g. calcium carbonate, naphthalene, sodium nitrite). This reference is added in equal quantity to all standards and to the sample. [Pg.183]

Chemical Modifications to Pitch. The earlier attempts to improve the commercial value of pitch residues must have been essentially exploratory research. Sanada et al, (71) in 1973 methylated the hydroxyl groups of 3,5-dimethyl phenol formaldehyde resin and noted, on carbonization, the formation of spheres of mesophase, the original resin giving an optical texture of mosaics in resultant carbons. Mochida et al. (72) carbonized naphthalene, anthracene and pyrene with aluminium chloride, sodium and potassium and examined the structure of the resultant carbons by optical microscopy and high resolution, fringe-imaging transmission electron microscopy (TEM),... [Pg.25]

Polycyclic benzenoid hydrocarbons are compounds that contain two or more fused benzene rings. Fused rings share two adjacent carbons—naphthalene has two fused rings, anthracene and phenanthrene have three fused rings, and tetracene, triphenyl-ene, pyrene, and chrysene have four fused rings. There are many polycyclic benzenoid hydrocarbons with more than four fused rings. [Pg.657]

D imethyl-4-hep tanone Isoamyl butyrate Isoamyl isobutyrate Isobutyl isovalerate Isobutyl carbonate Naphthalene Butylbenzene... [Pg.80]

Sulfonic acids can come from the sulfonation of oil cuts from white oil production by sulfuric acid treatment. Sodium salts of alkylaromatic sulfonic acids are compounds whose aliphatic chains contain around 20 carbon atoms. The aromatic ring compounds are mixtures of benzene and naphthalene rings. [Pg.360]

Use a 500 ml. three-necked flask equipped as in Section IV,19, but mounted on a water bath. Place 128 g. of naphthalene and 45 ml. of dry carbon tetrachloride in the flask, and 177 g. (55 ml.) of bromine in the separatory funnel. Heat the mixture to gentle boiling and run in the bromine at such a rate that little, if any, of it is carried over with the hydrogen bromide into the trap this requires about 3 hours. Warm gently, with stirring, for a further 2 hours or until the evolution of hydrogen bromide ceases. Replace the reflux condenser by a condenser set for downward distillation, stir, and distil off the carbon tetrachloride as completely as possible. Mix the residue with 8 g. of sodium... [Pg.537]

The commercial product, m.p. 53-55°, may be used. Alternatively the methyl -naphthyl ketone may be prepared from naphthalene as described in Section IV,136. The Friedel - Crafts reaction in nitrobenzene solution yields about 90 per cent, of the p-ketone and 10 per cent, of the a-ketone in carbon disulphide solution at — 15°, the proportions ore 65 per cent, of the a- and 35 per cent, of the p-isomer. With chlorobenzene ns the reaction medium, a high proportion of the a-ketone is also formed. Separation of the liquid a-isomer from the solid p-isomer in Such mixtures (which remain liquid at the ordinary temp>erature) is readily effected through the picrates the picrate of the liquid a-aceto compound is less soluble and the higher melting. [Pg.767]

The enone 807 is converted into the dienol triflatc 808 and then the conjugated diene 809 by the hydrogenolysis with tributylammonium for-mate[689,690]. Naphthol can be converted into naphthalene by the hydrogenolysis of its triflate 810[691-693] or sulfonates using dppp or dppf as a ligand[694]. Aryl tetrazoyl ether 811 is cleaved with formic acid using Pd on carbon as a catalyst[695]. [Pg.248]

Asymmetric hydrogenolysis of allylic esters with formic acid with satisfactory ee was observed[387], Geranyl methyl carbonate (594) was reduced to 570 with formic acid using l,8-bis(dimethylamino)naphthalene as a base and MOP-Phen as the best chiral ligand, achieving 85% ee. [Pg.371]

In general the most stable resonance structure for a polycyclic aromatic hydro carbon is the one with the greatest number of rings that correspond to Kekule formula tions of benzene Naphthalene provides a fairly typical example... [Pg.435]

Approximately 50—55% of the product from a coal-tar refinery is pitch and another 30% is creosote. The remaining 15—20% is the chemical oil, about half of which is naphthalene. Creosote is used as a feedstock for production of carbon black and as a wood preservative. Because of modifications to modem coking processes, tar acids such as phenol and cresyUc acids are contained in coal tar in lower quantity than in the past. To achieve economies of scale, these tar acids are removed from cmde coal tar with a caustic wash and sent to a central processing plant where materials from a number of refiners are combined for recovery. [Pg.162]

A further consequence of association of acylating agents with basic compounds is an increase in the bulk of the reagent, and greater resistance to attack at the more stericaHy hindered positions of aromatic compounds. Thus acylation of chrysene and phenanthrene in nitrobenzene or in carbon disulfide occurs to a considerable extent in an outer ring, whereas acylation of naphthalene leads to extensive reaction at the less reactive but stericaky less hindered 2-position. [Pg.557]

The accepted configuration of naphthalene, ie, two fused benzene rings sharing two common carbon atoms in the ortho position, was estabUshed in 1869 and was based on its oxidation product, phthaUc acid (1). Based on its fused-ring configuration, naphthalene is the first member in a class of aromatic compounds with condensed nuclei. Naphthalene is a resonance hybrid ... [Pg.480]

In chemical reactions, naphthalene usually acts as though the bonds were fixed in the positions as shown in the first stmcture above at the left. For most purposes, the conventional formula (1) is adequate the numbers represent the carbon atoms with attached hydrogen atoms. [Pg.480]

The two carbons that bear no numbers are common to both rings and carry no hydrogen atoms. From the symmetrical configuration of the naphthalene molecule, it should be possible for only two isomers to exist when one hydrogen atom is replaced by another atom or group. Therefore, positions 1, 4, 5, and 8 are identical and often are designated as "a" positions likewise, positions 2, 3, 6, and 7 are identical and are designated as "P" positions, as shown in (2). [Pg.481]

Naphthalene is very slightly soluble in water but is appreciably soluble in many organic solvents, eg, 1,2,3,4-tetrahydronaphthalene, phenols, ethers, carbon disulfide, chloroform, ben2ene, coal-tar naphtha, carbon tetrachloride, acetone, and decahydronaphthalene. Selected solubiUty data are presented in Table 4. [Pg.482]

Naphthalenesulfonic Acid. The sulfonation of naphthalene with excess 96 wt % sulfuric acid at < 80°C gives > 85 wt % 1-naphthalenesulfonic acid (a-acid) the balance is mainly the 2-isomer (P-acid). An older German commercial process is based on the reaction of naphthalene with 96 wt % sulfuric acid at 20—50°C (13). The product can be used unpurifted to make dyestuff intermediates by nitration or can be sulfonated further. The sodium salt of 1-naphthalenesulfonic acid is required, for example, for the conversion of 1-naphthalenol (1-naphthol) by caustic fusion. In this case, the excess sulfuric acid first is separated by the addition of lime and is filtered to remove the insoluble calcium sulfate the filtrate is treated with sodium carbonate to precipitate calcium carbonate and leave the sodium l-naphthalenesulfonate/7J(9-/4-J7 in solution. The dry salt then is recovered, typically, by spray-drying the solution. [Pg.489]

Naphthalene (qv) from coal tar continued to be the feedstock of choice ia both the United States and Germany until the late 1950s, when a shortage of naphthalene coupled with the availabihty of xylenes from a burgeoning petrochemical industry forced many companies to use o-xylene [95-47-6] (8). Air oxidation of 90% pure o-xylene to phthaUc anhydride was commercialized ia 1946 (9,10). An advantage of o-xylene is the theoretical yield to phthaUc anhydride of 1.395 kg/kg. With naphthalene, two of the ten carbon atoms are lost to carbon oxide formation and at most a 1.157-kg/kg yield is possible. Although both are suitable feedstocks, o-xylene is overwhelmingly favored. Coal-tar naphthalene is used ia some cases, eg, where it is readily available from coke operations ia steel mills (see Steel). Naphthalene can be produced by hydrodealkylation of substituted naphthalenes from refinery operations (8), but no refinery-produced napthalene is used as feedstock. Alkyl naphthalenes can be converted directiy to phthaUc anhydride, but at low yields (11,12). [Pg.482]

Replacing one carbon atom of naphthalene with an a2omethene linkage creates the isomeric heterocycles 1- and 2-a2anaphthalene. Better known by their trivial names quinoline [91-22-5] (1) and isoquinoline [119-65-3] (2), these compounds have been the subject of extensive investigation since their extraction from coal tar in the nineteenth century. The variety of studies cover fields as diverse as molecular orbital theory and corrosion prevention. There is also a vast patent Hterature. The best assurance of continuing interest is the frequency with which quinoline and isoquinoline stmctures occur in alkaloids (qv) and pharmaceuticals (qv), for example, quinine [130-95-0] and morphine [57-27-2] (see Alkaloids). [Pg.388]

Fig. 5. SolubiHty of naphthalene (squares) and phenanthrene (circles) in mixtures of toluene expanded with carbon dioxide at 25°C (B,0), in pure toluene... Fig. 5. SolubiHty of naphthalene (squares) and phenanthrene (circles) in mixtures of toluene expanded with carbon dioxide at 25°C (B,0), in pure toluene...
Diphenylmethane Base Method. In this method, the central carbon atom is derived from formaldehyde, which condenses with two moles of an arylamine to give a substituted diphenylmethane derivative. The methane base is oxidized with lead dioxide or manganese dioxide to the benzhydrol derivative. The reactive hydrols condense fairly easily with arylamines, sulfonated arylamines, and sulfonated naphthalenes. The resulting leuco base is oxidized in the presence of acid (Fig. 4). [Pg.272]

At pressures of 13 GPa many carbonaceous materials decompose when heated and the carbon eventually turns into diamond. The molecular stmcture of the starting material strongly affects this process. Thus condensed aromatic molecules, such as naphthalene or anthracene, first form graphite even though diamond is the stable form. On the other hand, aUphatic substances such as camphor, paraffin wax, or polyethylene lose hydrogen and condense to diamond via soft, white, soHd intermediates with a rudimentary diamond stmcture (29). [Pg.564]


See other pages where Carbon naphthalene is mentioned: [Pg.426]    [Pg.426]    [Pg.42]    [Pg.80]    [Pg.251]    [Pg.39]    [Pg.540]    [Pg.551]    [Pg.668]    [Pg.699]    [Pg.701]    [Pg.731]    [Pg.767]    [Pg.948]    [Pg.949]    [Pg.1044]    [Pg.77]    [Pg.453]    [Pg.95]    [Pg.390]    [Pg.484]    [Pg.501]    [Pg.504]    [Pg.240]    [Pg.335]    [Pg.342]    [Pg.463]    [Pg.166]    [Pg.267]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Carbonization naphthalene

© 2024 chempedia.info