Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide Subject

The subject has been reviewed (37,38). Water may be added to the feed to suppress methyl acetate formation, but is probably not when operating on an industrial scale. Water increase methanol conversion, but it is involved in the unavoidable loss of carbon monoxide. A typical methanol carbonylation flow sheet is given in Figure 2. [Pg.68]

Methanation. Since 1902, when Sabatier discovered that carbon monoxide could be hydrogenated to methane [74-82-8] the methanation reaction (eq. 12) has been the subject of intense investigation (47,48) (see Hydrocarbons, C —C ). [Pg.52]

In the presence of strong acid, formic acid decomposes to water and carbon monoxide. In the process, reactive intermediates form which are capable of direct carboxylation of carbonium ions. Since many carbonium ions are readily generated by the reaction of alcohols with strong acid, the process of elimination and carboxylation can be conveniently carried out in a single flask. The carbonium ions generated are subject to the... [Pg.134]

Figure 2.27. Temperature programmed desorption (TPD) spectra of carbon monoxide (measured by Ap) as a function of temperature from nickel surfaces (a) Ni(l 11), (b) Ni(l 11) when the initially dosed surface has been subjected to an electron beam (150 pA for 10 minutes over an area of 1 mm2) and (c) a cleaved nickel surface.85 Reprinted with permission from Elsevier Science. Figure 2.27. Temperature programmed desorption (TPD) spectra of carbon monoxide (measured by Ap) as a function of temperature from nickel surfaces (a) Ni(l 11), (b) Ni(l 11) when the initially dosed surface has been subjected to an electron beam (150 pA for 10 minutes over an area of 1 mm2) and (c) a cleaved nickel surface.85 Reprinted with permission from Elsevier Science.
The field of transition metal complexes of isocyanides developed slowly over more than a century to a respectable subarea in coordination chemistry, and in the process seems to have attracted very little attention. Even the remarkable resurgence of transition metal organometallic chemistry in the last 20 years, and the realization that isocyanides and carbon monoxide should be quite similar as ligand groups in organometallic complexes, did not initiate an extensive development of this area of chemistry. Only in the last several years has this potentially important subject begun to receive the attention it would seem to deserve. [Pg.21]

This chapter is concerned entirely with the insertion of carbon monoxide into transition metal-carbon cr-bonds. Sulfur dioxide insertion 154, 239), also common among transition metal-carbon complexes, will be treated in a complementary review, which is to appear later. Subject to the restrictions given at the beginning of Section VI, an attempt has been made at a complete literature coverage of the insertion of CO. Particular emphasis focuses on recent results, especially those of a kinetic and stereochemical nature. [Pg.90]

Emissions from hazardous waste combustors are regulated under two statutory authorities RCRA and the CAA. The MACT standards set emission limitations for dioxins, furans, metals, particulate matter, total chlorine, hydrocarbons/carbon monoxide, and destruction and removal efficiency (DRE) for organics. Once a facility has demonstrated compliance with the MACT standards by conducting its comprehensive performance test (CPT) and submitting its notification of compliance (NOC), it is no longer subject to the RCRA emission requirements with a few exceptions. RCRA-permitted facilities, however, must continue to comply with their permitted emissions requirements until they obtain modifications to remove any duplicative emissions conditions from their RCRA... [Pg.460]

Whilst carbon monoxide and nitrogen oxides are the toxic products of explosives, other constituents of the fume cause a characteristic smell. As the nitroglycerine content of explosives is reduced, this smell tends to become rather unpleasant. Subjective tests must be used for its estimation. [Pg.73]

The elimination of carbon monoxide, ie. the (formal) reversal of cyclopropenone formation from divalent carbon species and alkynes, takes place when cyclopropenones are heated to higher temperatures (130—250 °C) or when subjected to photolysis or electron impact191 ... [Pg.63]

Since the early work of Langmuir (1), the chemisorption of carbon monoxide on platinum surfaces has been the subject of numerous investigations. Besides its scientific interest, an understanding of CO chemisorption on Pt is of considerable practical importance for example, the catalytic reaction of CO over noble metals (such as Pt) is an essential part of automobile emission control. [Pg.79]

The structure of supported rhodium catalysts has been the subject of intensive research during the last decade. Rhodium is the component of the automotive exhaust catalyst (the three-way catalyst) responsible for the reduction of NO by CO [1], In addition, it exhibits a number of fundamentally interesting phenomena, such as strong metal-support interaction after high temperature treatment in hydrogen [21, and particle disintegration under carbon monoxide [3]. In this section we illustrate how techniques such as XPS, STMS, EXAFS, TEM and infrared spectroscopy have led to a fairly detailed understanding of supported rhodium catalysts. [Pg.247]

Very similar results to those described in Fig. 3-6 were obtained when sodium cholate solubilized hepatic microsomes from DBA-treated female little skates were subjected to chromatography on DEAE-cellulose as described above (data not shown). Also not shown are the results obtained with hepatic microsomes from untreated male and female little skates. With untreated animals, 80-90% of the cytochrome P-450 eluted from the DEAE-cellulose column only at higher ionic strength (i.e., with the KC1 gradient). However, in all preparations studied, an appreciable amount of cytochrome P-450 (10-20%), having its absorption maximum in the carbon monoxide-ligated and reduced state at 450 nm, was eluted from the column with buffer II, as was observed with cytochrome P-448 of hepatic microsomes from DBA-treated skates. The further purification of the various forms of cytochrome P-450 from control and DBA-pretreated little skate livers is currently in progress in our laboratory. [Pg.309]

In a continuous reformer, some particulate and dust matter can be generated as the catalyst moves from reactor to reactor and is subject to attrition. However, due to catalyst design little attrition occurs, and the only outlet to the atmosphere is the regeneration vent, which is most often scrubbed with a caustic to prevent emission of hydrochloric acid (this also removes particulate matter). Emissions of carbon monoxide and hydrogen sulfide may occur during regeneration of catalyst. [Pg.105]

Carboxyhemoglobin Concentration [HbCO] This can be estimated with the method of Jones and co workers. The subject holds a deep breath for 20 s to allow equilibration of carbon monoxide between alveolar air and blood and then expires a sample of that air into a container. The air carbon monoxide concentration may be directly related to carboxyhemoglobin concentration [HbCO]. The test can be performed before exposure in an environmental chamber to help to verify that the subject has not received inordinate ambient pollutant exposure. [Pg.397]

In one study,human subjects were tested in a controlled-environ-ment chamber with a high (summer) temperature and with ozone, nitrogen dioxide, and carbon monoxide as pollutants. Performance on a divided-attention task given at the end of the exposure period and the subjects heartrate variability (a potential psychophysiologic measure of attention) were evaluated. The subjects displayed a significant decrement in peripheral attention associated with increased ambient temperature. Effects attributable to pollutant gases were variable. [Pg.397]

Adult male volunteers were exposed to purified air,2 -2 - to ozone alone, or to ozone in combination with nitrogen dioxide and carbon monoxide. No additional effects were detected when nitrogen dioxide at 0.3 ppm was added to ozone. The addition of carbon monoxide at 30 ppm to the ozone-nitrogen dioxide mixture produced no additional effects, other than a slight increase in blood carboxyhemoglobin content and small decreases in psychomotor performance, which were not consistent in different subject groups. [Pg.408]


See other pages where Carbon monoxide Subject is mentioned: [Pg.92]    [Pg.496]    [Pg.2244]    [Pg.148]    [Pg.149]    [Pg.149]    [Pg.274]    [Pg.116]    [Pg.138]    [Pg.324]    [Pg.33]    [Pg.115]    [Pg.3]    [Pg.153]    [Pg.68]    [Pg.68]    [Pg.98]    [Pg.451]    [Pg.14]    [Pg.1]    [Pg.52]    [Pg.176]    [Pg.713]    [Pg.336]    [Pg.522]    [Pg.411]    [Pg.105]    [Pg.6]    [Pg.221]    [Pg.164]    [Pg.292]    [Pg.25]    [Pg.173]    [Pg.404]    [Pg.404]   
See also in sourсe #XX -- [ Pg.1259 ]

See also in sourсe #XX -- [ Pg.709 ]

See also in sourсe #XX -- [ Pg.311 ]




SEARCH



Carbon Subject

Carbon monoxide tolerance 1122 Subject

Carbonate Subject

© 2024 chempedia.info