Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide reaction mechanisms

The mechanism is well understood, involving complexation of the rhodium with iodine and carbon monoxide, reaction with methyl iodide (formed from the methanol with hydrogen iodide), insertion of CO in the rhodium-carbon bond, and hydrolysis to give product with regeneration of the complex and more hydrogen iodide. [Pg.211]

For the reaction between nitrogen dioxide and carbon monoxide, the mechanism is thought to involve the steps shown in Fig. 15.8, where k1 and k2 are the rate constants of the individual reactions. In this mechanism gaseous N03 is an intermediate, a species that is neither a reactant nor a product but that is formed and consumed during the reaction sequence (see Fig. 15.8). [Pg.726]

II). The same mechanism has been proposed for the photolysis of diphenylcarbonate, a low molecular weight model compound [109]. Moreover, in this latter case, it has been shown that loss of carbon dioxide or carbon monoxide (reaction (14)), followed by cage recombination of the radicals, results in the formation of diphenylether and 2-hydroxy-diphenylether, respectively. Such reactions are also likely to occur in the photolysis of polycarbonate. [Pg.386]

For the reaction between nitrogen dioxide and carbon monoxide, the mechanism is thought to involve the following steps ... [Pg.562]

The carbon monoxide activation mechanism implies that its reaction with the substrate must take place within the coordination sphere of the catalyst. [Pg.20]

Carbon Monoxide.—The mechanism of the alkyl-acyl insertion reaction usually involves a reversible migration of the alkyl group followed by reaction with a ligand L to form a co-ordinatively saturated product [equation (1)]. [Pg.426]

The first anhydride plant in actual operation using methyl acetate carbonylation was at Kingsport, Tennessee (41). A general description has been given (42) indicating that about 900 tons of coal are processed daily in Texaco gasifiers. Carbon monoxide is used to make 227,000 t/yr of anhydride from 177,000 t/yr of methyl acetate 166,000 t/yr of methanol is generated. Infrared spectroscopy has been used to foUow the apparent reaction mechanism (43). [Pg.77]

Study of the mechanism of this complex reduction-Hquefaction suggests that part of the mechanism involves formate production from carbonate, dehydration of the vicinal hydroxyl groups in the ceUulosic feed to carbonyl compounds via enols, reduction of the carbonyl group to an alcohol by formate and water, and regeneration of formate (46). In view of the complex nature of the reactants and products, it is likely that a complete understanding of all of the chemical reactions that occur will not be developed. However, the Hquefaction mechanism probably involves catalytic hydrogenation because carbon monoxide would be expected to form at least some hydrogen by the water-gas shift reaction. [Pg.26]

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

Quantum, by contrast, converted an ethylene—carbon monoxide polymer into a polyester-containing terpolymer by treatment with acidic hydrogen peroxide, the Baeyer-Villiger reaction (eq. 11). Depending on the degree of conversion to polyester, the polymer is totally or partially degraded by a biological mechanism. [Pg.476]

Thermal cracking tends to deposit carbon on the catalyst surface which can be removed by steaming. Carbon deposition by this mechanism tends to occur near the entrance of the catalyst tubes before sufficient hydrogen has been produced by the reforming reactions to suppress the right hand side of the reaction. Promoters, such as potash, are used to help suppress cracking in natural gas feedstocks containing heavier hydrocarbons. Carbon may also be formed by both the disproportionation and the reduction of carbon monoxide... [Pg.346]

The mechanism of carbon elimination is similar to those of the earlier open-hearth processes, ie, oxidation of carbon to carbon monoxide and carbon dioxide. The chemical reactions and results are the same in both cases. The progress of the reaction is plotted in Figure 5. [Pg.377]

Only recently has a mechanism been proposed for the copper-cataly2ed reaction that is completely satisfactory (58). It had been known for many years that a small amount of carbon dioxide in the feed to the reactor is necessary for optimum yield, but most workers in the field beHeved that the main reaction in the formation of methanol was the hydrogenation of carbon monoxide. Now, convincing evidence has been assembled to indicate that methanol is actually formed with >99% selectivity by the reaction of dissociated, adsorbed hydrogen and carbon dioxide on the metallic copper surface in two steps ... [Pg.199]

G. Fisher and co-workers, "Mechanism of the Nitric Oxide—Carbon Monoxide—Oxygen Reaction Over a Single Crystal Rhodium Catalyst," in M. [Pg.496]

Thiirane 1,1-dioxides extrude sulfur dioxide readily (70S393) at temperatures usually in the range 50-100 °C, although some, such as c/s-2,3-diphenylthiirane 1,1-dioxide or 2-p-nitrophenylthiirane 1,1-dioxide, lose sulfur dioxide at room temperature. The extrusion is usually stereospeciflc (Scheme 10) and a concerted, non-linear chelotropic expulsion of sulfur dioxide or a singlet diradical mechanism in which loss of sulfur dioxide occurs faster than bond rotation may be involved. The latter mechanism is likely for episulfones with substituents which can stabilize the intermediate diradical. The Ramberg-Backlund reaction (B-77MI50600) in which a-halosulfones are converted to alkenes in the presence of base, involves formation of an episulfone from which sulfur dioxide is removed either thermally or by base (Scheme 11). A similar conversion of a,a -dihalosulfones to alkenes is effected by triphenylphosphine. Thermolysis of a-thiolactone (5) results in loss of carbon monoxide rather than sulfur (Scheme 12). [Pg.141]

A l-Iiter, three-necked, round-bottom flask is equipped with a mechanical stirrer, a thermometer immersed in the reaction mixture, a dropping funnel, and a gas vent. In the flask is placed a mixture of 96% sulfuric acid (25.5 ml, 470 g, 4.8 mole), carbon tetrachloride (100 ml), and adamantane (13.6 g, 0.10 mole), and the mixture is cooled to 15-20° with rapid stirring in an ice bath. One milliliter of 98% formic acid is added and the mixture is stirred until the evolution of carbon monoxide is rapid (about 5 minutes). A solution of 29.6 g (38 ml, 0.40 mole) of t-butyl alcohol in 55 g (1.2 mole) of 98-100% formic acid is then added dropwise to the stirred mixture over 1-2 hours, the temperature being maintained at 15-20°. After stirring for an additional 30 minutes, the mixture is poured onto 700 g of ice, the layers are separated, and the aqueous (upper) layer is extracted three times with lOO-ml portions of carbon tetrachloride. The combined carbon tetrachloride solutions are shaken with 110 ml of 15 A ammonium hydroxide, whereupon ammonium 1-adamantanecarboxylate forms as a crystalline solid. This precipitate is collected by filtration through a fritted glass funnel and washed... [Pg.151]

The FTS mechanism could be considered a simple polymerization reaction, the monomer being a Ci species derived from carbon monoxide. This polymerization follows an Anderson-Schulz-Flory distribution of molecular weights. This distribution gives a linear plot of the logarithm of yield of product (in moles) versus carbon number. Under the assumptions of this model, the entire product distribution is determined by one parameter, a, the probability of the addition of a carbon atom to a chain (Figure 4-7). ... [Pg.126]

Much work has been undertaken to understand the steps and intermediates by which the reaction occurs on the heterogeneous catalyst surface. However, the exact mechanism is not fully established. One approach assumes a first-step adsorption of carbon monoxide on the catalyst surface followed by a transfer of an adsorbed hydrogen atom from an adjacent site to the metal carbonyl (M-CO) ... [Pg.126]

A simplified mechanism for the hydroformylation reaction using the rhodium complex starts by the addition of the olefin to the catalyst (A) to form complex (B). The latter rearranges, probably through a four-centered intermediate, to the alkyl complex (C). A carbon monoxide insertion gives the square-planar complex (D). Successive H2 and CO addition produces the original catalyst and the product ... [Pg.165]

At lower temperatures the reaction between carbon monoxide and nitrogen dioxide takes place by a quite different mechanism. Two steps are involved ... [Pg.307]

Even if it is assumed that the reaction is ionic, Occam s Razor would lead to the conclusion that the system is too complex and that the effort to keep it ionic is too great. It is difficult to undersand why step 8c is slow and why a simple uncharged complex would not be equally reasonable. We prefer a mechanism in which the carbon monoxide molecule is adsorbed parallel to the surface and in which the oxygen orbitals as well as the carbon orbitals of C=0 bond electrons interact with the metal. It seems reasonable that hydrogenolysis occurs exclusively only because the oxygen is held in some way while the two bonds are broken and it finally desorbs as water. The most attractive picture would be (a) adsorption of CO and H2 with both atoms on the surface... [Pg.18]

It was shown in laboratory studies that methanation activity increases with increasing nickel content of the catalyst but decreases with increasing catalyst particle size. Increasing the steam-to-gas ratio of the feed gas results in increased carbon monoxide shift conversion but does not affect the rate of methanation. Trace impurities in the process gas such as H2S and HCl poison the catalyst. The poisoning mechanism differs because the sulfur remains on the catalyst while the chloride does not. Hydrocarbons at low concentrations do not affect methanation activity significantly, and they reform into methane at higher levels, hydrocarbons inhibit methanation and can result in carbon deposition. A pore diffusion kinetic system was adopted which correlates the laboratory data and defines the rate of reaction. [Pg.56]

The first and rate-determining step involves carbon monoxide dissociation from the initial pentacarbonyl carbene complex A to yield the coordinatively unsaturated tetracarbonyl carbene complex B (Scheme 3). The decarbonyla-tion and consequently the benzannulation reaction may be induced thermally, photochemically [2], sonochemically [3], or even under microwave-assisted conditions [4]. A detailed kinetic study by Dotz et al. proved that the initial reaction step proceeds via a reversible dissociative mechanism [5]. More recently, density functional studies on the preactivation scenario by Sola et al. tried to propose alkyne addition as the first step [6],but it was shown that this... [Pg.125]

A 500-ml, three-necked, round-bottomed flask fitted with a sealed mechanical stirrer and an outlet leading to a gas bubbler, is charged with a solution containing 4.0 g (0.0208 mole) of cyclobutadieneiron tricarbonyl2 [tricarbonyl( 4-l,3-eyclobutadiene)iron] and 2.0 g. (0.0185 mole) of freshly sublimed p-benzoquinone (2,4-cyclohexadiene-l,4-dione) (Note 1) in 72 ml. of acetone and 8 ml. of water. To the vigorously stirred, ice-cold solution, approximately 40-42 g of ceric ammonium nitrate [ammonium hexanitrocerate(IV)] (Note 2) is added portion-wise over a period of 10-12 minutes (Note 3), until the carbon monoxide evolution has ceased. The reaction mixture is then poured into 600 ml. [Pg.43]


See other pages where Carbon monoxide reaction mechanisms is mentioned: [Pg.298]    [Pg.279]    [Pg.1105]    [Pg.46]    [Pg.328]    [Pg.1105]    [Pg.4559]    [Pg.185]    [Pg.244]    [Pg.308]    [Pg.392]    [Pg.544]    [Pg.7]    [Pg.103]    [Pg.483]    [Pg.423]    [Pg.313]    [Pg.135]    [Pg.309]    [Pg.138]    [Pg.16]    [Pg.322]   
See also in sourсe #XX -- [ Pg.42 , Pg.43 , Pg.44 , Pg.45 ]




SEARCH



Carbon mechanism

Carbon monoxide mechanism

Carbon monoxide reactions

Monoxide Reactions

© 2024 chempedia.info