Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide, engines

PGM catalyst technology can also be appHed to the control of emissions from stationary internal combustion engines and gas turbines. Catalysts have been designed to treat carbon monoxide, unbumed hydrocarbons, and nitrogen oxides in the exhaust, which arise as a result of incomplete combustion. To reduce or prevent the formation of NO in the first place, catalytic combustion technology based on platinum or palladium has been developed, which is particularly suitable for appHcation in gas turbines. Environmental legislation enacted in many parts of the world has promoted, and is expected to continue to promote, the use of PGMs in these appHcations. [Pg.173]

In principle, the catalytic converter is a fixed-bed reactor operating at 500—620°C to which is fed 200—3500 Hters per minute of auto engine exhaust containing relatively low concentrations of hydrocarbons, carbon monoxide, and nitrogen oxides that must be reduced significantly. Because the auto emission catalyst must operate in an environment with profound diffusion or mass-transfer limitations (51), it is apparent that only a small fraction of the catalyst s surface area can be used and that a system with the highest possible surface area is required. [Pg.198]

Hydrocarbons and carbon monoxide emissions can be minimised by lean air/fuel mixtures (Fig. 2), but lean air/fuel mixtures maximize NO emissions. Very lean mixtures (>20 air/fuel) result in reduced CO and NO, but in increased HC emissions owing to unstable combustion. The turning point is known as the lean limit. Improvements in lean-bum engines extend the lean limit. Rich mixtures, which contain excess fuel and insufficient air, produce high HC and CO concentrations in the exhaust. Very rich mixtures are typically used for small air-cooled engines, needed because of the cooling effect of the gasoline as it vaporizes in the cylinder, where CO exhaust concentrations are 4 to 5% or more. [Pg.483]

Beyond the catalytic ignition point there is a rapid increase in catalytic performance with small increases in temperature. A measure of catalyst performance has been the temperature at which 50% conversion of reactant is achieved. For carbon monoxide this is often referred to as CO. The catalyst light-off property is important for exhaust emission control because the catalyst light-off must occur rehably every time the engine is started, even after extreme in-use engine operating conditions. [Pg.488]

Oxidation Catalyst. An oxidation catalyst requires air to oxidize unbumed hydrocarbons and carbon monoxide. Air is provided with an engine driven air pump or with a pulse air device. Oxidation catalysts were used in 1975 through 1981 models but thereafter declined in popularity. Oxidation catalysts may be used in the future for lean bum engines and two-stroke engines. [Pg.491]

The problems with the combustion reaction occur because the process also produces many other products, most of which are termed air pollutants. These can be carbon monoxide, carbon dioxide, oxides of sulfur, oxides of nitrogen, smoke, fly ash, metals, metal oxides, metal salts, aldehydes, ketones, acids, polynuclear hydrocarbons, and many others. Only in the past few decades have combustion engineers become concerned about... [Pg.78]

Emission factors must be also critically examined to determine the tests from which they were obtained. For example, carbon monoxide from an automobile will vary with the load, engine speed, displacement, ambient temperature, coolant temperature, ignition timing, carburetor adjustment, engine condition, etc. However, in order to evaluate the overall emission of carbon monoxide to an area, we must settle on an average value that we can multiply by the number of cars, or kilometers driven per year, to determine the total carbon monoxide released to the area. [Pg.94]

Carbon monoxide Catalyst regenerators, compressor engines, coking operations, incinerators... [Pg.519]

Unlike carbon dioxide and water that are the inevitable by products of complete combustion of hydrocarbons, species such as carbon monoxide, ethene, toluene, and formaldehyde can be emitted because combustion has been interrupted before completion. Many factors lead to emissions from incomplete combustion. Emitted unburned hydrocarbons and carbon monoxide are regulated pollutants that must be eliminated. In automobiles with spark ignited engines, these emissions are almost entirely removed by the catalytic converter. [Pg.273]

Carbon monoxide (CO) is a colurless, odorless, and tasteless gas. Inhalation of as little as 0.3 percent by volume can cause death within thirty minutes. The exhaust gas from spark ignition engines at an idle speed has a high CO content. For this reason NEVER allow an engine to run in an enclosed space such as a closed garage. [Pg.334]

Transportation accounts for about one-fourth of the primary energy consumption in the United States. And unlike other sectors of the economy that can easily switch to cleaner natural gas or electricity, automobiles, trucks, nonroad vehicles, and buses are powered by internal-combustion engines burning petroleum products that produce carbon dioxide, carbon monoxide, nitrogen oxides, and hydrocarbons. Efforts are under way to accelerate the introduction of electric, fuel-cell, and hybrid (electric and fuel) vehicles to replace sonic of these vehicles in both the retail marketplace and in commercial, government, public transit, and private fleets. These vehicles dramatically reduce harmful pollutants and reduce carbon dioxide emissions by as much as 50 percent or more compared to gasoline-powered vehicles. [Pg.479]

If the engine is fed a mixture containing more fuel than the stoichiometric anioiint, the mixture is said to be rich, and carbon monoxide (CO) and hydrogen are added to the combustion products. Because these two gases are fuels themselves, their presence in the exhaust signifies incomplete combustion and wasted energy. [Pg.564]

Almost all the major car, bus, and truck manufacturers have developed compressed natural gas engines and vehicles. These manufacturers have been able to offer better performance (due to higher octane) and far lower emissions of nitrogen oxides, carbon monoxide, particulate matter, and carbon dioxide to the atmosphere. In 1998, Honda introduced the cleanest internal combustion engine vehicle ever commercially produced the natural gas Civic GX with emissions at one-tenth the state of California s Ultra Low Emission Vehicle standard. Primarily due to the high octane of natural gas, Honda achieved these results without sacrificing performance. [Pg.831]

Exhaust system The engine operating mode controls the tailpipe emissions of hydrocarbons (HC) and carbon monoxide (CO). Over 80% of HC and CO emissions are generated during cold-start and warm-up due to incomplete combustion. Fuel vaporization and fuel/ air mixing are important factors in achieving thorough combustion of the hydrocarbons. [Pg.309]


See other pages where Carbon monoxide, engines is mentioned: [Pg.424]    [Pg.425]    [Pg.87]    [Pg.97]    [Pg.195]    [Pg.453]    [Pg.142]    [Pg.172]    [Pg.327]    [Pg.402]    [Pg.212]    [Pg.535]    [Pg.198]    [Pg.480]    [Pg.492]    [Pg.495]    [Pg.512]    [Pg.512]    [Pg.2405]    [Pg.138]    [Pg.79]    [Pg.524]    [Pg.526]    [Pg.264]    [Pg.240]    [Pg.112]    [Pg.207]    [Pg.449]    [Pg.449]    [Pg.455]    [Pg.551]    [Pg.794]    [Pg.795]    [Pg.834]    [Pg.149]    [Pg.109]   
See also in sourсe #XX -- [ Pg.487 , Pg.488 , Pg.489 ]




SEARCH



Engineered carbons

Engineering Carbons

© 2024 chempedia.info