Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide, 5 + 1-cycloaddition with

This imidazoline-carboxylate synthesis involves the coupling of four separate cont5)onents (two imines, an acid chloride and carbon monoxide), and the generation of at least five separate bonds, all via a one-pot, palladium catalyzed process. From an analysis of the structure of the imidazoline carboxylate, the individual constituents can be seen (Figure 3). This stmcture might be considered to arise from the dipolar cycloaddition of an imine with a mesoionic l,3-oxazolium-5-oxide (5) intermediate, which itself could be generated from imine, acid chloride and carbon monoxide. Consistent with this potential formulation, performing the catalytic reaction with CO leads to the incorporation of the carbon-13 label into the carboxylate position of 4. [Pg.506]

If the reaction temperature is raised to 430 K and the carbon monoxide pressure to 3 atm, coordination of the metal atom in the rearranged product occurs via the phosphorus site, as in 159 (M = Cr, Mo, W) [84JOM(263)55]. Along with this product (M = W) at 420 K, formation of the dimer of 5-phenyl-3,4-dimethyl-2//-phosphole, 160 (the a complex), is possible as a consequence of [4 - - 2] cycloaddition reactions. Chromium hexacarbonyl in turn forms phospholido-bridged TiyP)-coordinatedcomplex 161. At 420 K in excess 2,3-dimethylbutadiene, a transformation 162 163 takes place (82JA4484). [Pg.144]

Interestingly, in the inverse-electron-demand Diels-Alder reactions of oxepin with various enophiles such as cyclopentadienones and tetrazines the oxepin form, rather than the benzene oxide, undergoes the cycloaddition.234 236 Usually, the central C-C double bond acts as dienophile. Oxepin reacts with 2,5-dimethyl-3,4-diphenylcyclopenta-2,4-dienone to give the cycloadduct 6 across the 4,5-C-C double bond of the heterocycle.234 The adduct resists thermal carbon monoxide elimination but undergoes cycloreversion to oxepin and the cyclopenta-dienone.234... [Pg.52]

Diels-Alder cycloaddition of 2/f-azirines 23 with cyclopentadienones provides 3//-azepines 25 in excellent yields by electrocyclic ring opening, with concomitant loss of carbon monoxide, of the initially formed, nonisolable cycloadducts 24, followed by a [1,5]-H shift in the resulting 2//-azepines.31 108... [Pg.121]

Benzannulated azocines can be prepared starting from 4-phenyl-l,2.3-benzotriazine (16), flash-vacuum pyrolysis of which leads to 2-phenylbenzazete (17) (cf. Houben-Weyl. Vol. E16c, p 939), which is stable until about 40 °C and easily enters into cycloaddition reactions with dienes. With tetraphenylcyclopentadienone, a nonisolable adduct is formed which, by loss of carbon monoxide, gives an azabicyclo[4.2.0]octatriene derivative that isomerizes to the 1 -benzazocine 18.22... [Pg.514]

Aryl- and alkenylcarbene complexes are known to react with alkynes through a [3C+2S+1C0] cycloaddition reaction to produce benzannulated compounds. This reaction, known as the Dotz reaction , is widely reviewed in Chap. Chromium-Templated Benzannulation Reactions , p. 123 of this book. However, simple alkyl-substituted carbene complexes react with excess of an alkyne (or with diynes) to produce a different benzannulated product which incorporates in its structure two molecules of the alkyne, a carbon monoxide ligand and the carbene carbon [128]. As referred to before, this [2S+2SH-1C+1C0] cycloaddition reaction can be carried out with diyne derivatives, showing these reactions give better yields than the corresponding intermolecular version (Scheme 80). [Pg.112]

When benzyne is generated in the absence of another reactive molecule it dimerizes to biphenylene.132 In the presence of dienes, benzyne is a very reactive dienophile and [4+2] cycloaddition products are formed. The adducts with furans can be converted to polycyclic aromatic compounds by elimination of water. Similarly, cyclopentadienones can give a new aromatic ring by loss of carbon monoxide. Pyrones give adducts that can aromatize by loss of C02, as illustrated by Entry 7 in Scheme 11.9. [Pg.1041]

The Pauson-Khand reaction (PKR) [96] consists of the synthesis of cyclopen-tenones by reaction of an alkene with a dicobalthexacarbonyl complexed alkyne (Scheme 57) and has recently emerged as one of the methods of choice for the obtainment of five-membered carbocyclic rings [97]. Its unique atom connectivity, which involves the two unsaturated carbons of the reagents and the carbon atom of a carbon monoxide ligand of cobalt usually in a regioselective manner (Scheme 57), has brought to refer to PKR as a [2 -I- 2 + 1] cycloaddition. [Pg.66]

Merlic demonstrated the direct, non-photochemical insertion of carbon monoxide from acylamino chromium carbene complexes 14 to afford a presumed chromium-complexed ketene 15 <00JA7398>. This presumed metal-complexed ketene leads to a munchnone 16 or munchnone complex which undergo dipolar cycloaddition with alkynes to yield the pyrroles 17 upon loss of carbon dioxide. [Pg.112]

Dimethylallene reacted with tetraphenylcyclopentadienone to produce methy-lenecyclohexadiene derivative 180 [146]. The cycloaddition occurred at the more substituted double bond of the allene, which was followed by extrusion of carbon monoxide from the intermediate 179. [Pg.785]

An Rh-catalyzed [4+1 -cycloaddition reaction of vinylallenes with carbon monoxide provies an efficient synthetic method for cross-conjugated cydopentenones (Scheme 16.40) [39, 40]. [Pg.941]

Scheme 16.40 Rh-catalyzed [4 + l]-cycloaddition of vinylallenes with carbon monoxide. Scheme 16.40 Rh-catalyzed [4 + l]-cycloaddition of vinylallenes with carbon monoxide.
An Rh-catalyzed asymmetric [4 +l]-cycloaddition of vinylallenes with carbon monoxide was realized for the first time to furnish chiral 5-substituted 2-alkylidene-3-cydopentenones (Scheme 16.42) [42],... [Pg.941]

Abstract The transition metal mediated conversion of alkynes, alkenes, and carbon monoxide in a formal [2 + 2+1] cycloaddition process, commonly known as the Pauson-Khand reaction (PKR), is an elegant method for the construction of cyclopentenone scaffolds. During the last decade, significant improvements have been achieved in this area. For instance, catalytic PKR variants are nowadays possible with different metal sources. In addition, new asymmetric approaches were established and the reaction has been applied as a key step in various total syntheses. Recent work has also focused on the development of CO-free conditions, incorporating transfer carbonylation reactions. This review attempts to cover the most important developments in this area. [Pg.172]

An important procedure for the synthesis of cyclopentenones is the so-called Pauson-Khand reaction, which constitutes a formal [2 + 2 + 1] cycloaddition of an alkene, an alkyne, and carbon monoxide. Due to the increase in structural diversity of the available starting materials, the reaction has become an attractive target for scientific investigations [1-8]. The first successful example was reported by Pauson, Khand et al [9] in 1973 for the conversion of norbornene with the phenylacetylene-hexacarbonyldicobalt complex to give the corresponding cyclopentenone in 45% yield (Eq. 1). [Pg.173]

Cobalt, as its CpCo(CO)2 complex, has proven to be especially suited to catalyze [2 + 2 + 2] cycloadditions of two alkyne units with an alkyne or alkene. These cobalt-mediated [2 + 2 + 2] cycloaddition reactions have been studied in great detail by Vollhardt337. The generally accepted mechanism for these cobalt mediated cycloadditions, and similar transition metal mediated cycloadditions in general, has been depicted in equation 166. Consecutive co-ordination of two triple bonds to CpCo(CO)2 with concomitant extrusion of two molecules of carbon monoxide leads to intermediates 578 and 579 via monoalkyne complex 577. These react with another multiple bond to form intermediate 580. The conversion of 578 to 580 is said to be kinetically favored over that of 579 to 580. Because intermediates like 580 have never been isolated, it is still unclear whether the next step is a Diels-Alder reaction to form the final product or an insertion to form 581. The exact circumstances might determine which pathway is followed. [Pg.461]

However, a crucial difference was seen in analogous reactions with the (tert-butyl)alkynylcarbene complex 184.a, carried out under a pressure of carbon monoxide. A [4 + 2] cycloaddition takes place, but in this case the ene fragment is not the alkyne functionality, but the carbene-alkyne bond. The mechanism presented by Park implies that this is due to the preliminary... [Pg.328]

The growth step procedures for the cycloaddition reaction are very simple. Combination of an ethynyl-substituted dendrimer and an excess of the cyclo-pentadienone in a refluxing solvent such as o-xylene, diphenylether, or methyl-naphthalene (with b.p. higher than 130 °C) typically results in quantitative conversion within 24 h. The refluxing of the solvent is necessary to accelerate the elimination of the carbon monoxide in the cycloaddition. The purity of the resulting compounds was checked by MALDI-TOF mass spectrometry which showed quantitative reaction, facilitating work-up. By repeated precipitation in methanol, the pure product can be isolated as white amorphous powders in yields higher than 90%. [Pg.6]

The intramolecular 2 - - 2 - - 1-cycloadditions of allene, alkyne (106), and carbon monoxide yield a -methylene-(107) or 4-alkylidene-cyclopentenones (108) depending on the allene structure or the reaction conditions (Scheme 4i).i59.i6o The cobalt-catalysed 4 - - 2 - - 2-cycloaddition of norbornadienes (109) with buta-1,3-dienes readily produces cycloadducts (110) when a bimetal system is used (Scheme A2) ... [Pg.478]

Asymmetric [4+1] cycloaddition of vinylallenes and carbon monoxide is promoted by a cationic Rh complex formed in situ from [Rh(cod)2]PF6 and chiral diphosphine ligand, (R.R)-Me-DuPHOS to afford 2-alkylidene-3-cyclopentenones with high asymmetric induction [72] (Eq. 8A.48). [Pg.487]

When (67) was treated with a wide variety of cycloaddition reagents under various conditions, it behaved as a diene or a dienophile but not as a 1,3-dipole. As a dienophile it reacted with 2,3-dimethyl-1,3-butadiene to give (70) and with cyclopentadiene to give an analogous product. As a diene it reacted with [2.2.1] bicycloheptene to give (72), presummably via (71), by loss of carbon monoxide and hydrogen. No products were isolated when (67) was treated with maleic anhydride, dimethyl acetylene-dicarboxylate, diphenylacetylene, dimethyl fumarate, carbon disulfide, isobutyl vinyl ether, cyclohexene, and cyclopentene. [Pg.190]

Pyrrole synthesis.3 Imino carbene complexes such as 1 react with alkynes in hexane at 70°, possibly by a [2 + 2]cycloaddition, to form pyrroles in 80-98% yield. Usually, only a single pyrrole is obtained. This heteroannelation is unusual because carbon monoxide is not incorporated to give a six-membered product. However, O-alkyl imidate carbene complexes such as 3 react with 1-alkynes to form 3-hydroxy-pyridines as the major product. [Pg.89]

Inhibition experiments with carbon monoxide reveal that the introduction of the second alkyne is initiated by loss of CO. The alkyne occupies the vacant coordination site and finally yields the double-addition product XVI by forming two C—C bonds. This final step resembles the 1.3-dipolar cycloaddition of alkynes and 1.3-dipoles95. This mechanism is discussed in detail in Section V. 2. [Pg.129]

A ruthenium-promoted carbonylation of allenyl alcohols 884 is a powerful method for the synthesis of 5,6-dihydropyran-2-ones 885 (Equation 356) <20000L441, 2003JOC8571>. Co2(CO)6-mediated tandem [5+1]/ [2+2+1] cycloaddition reactions of the epoxide 886 with carbon monoxide provide a one-pot synthesis of tricyclic 5,6-dihydropyran-2-ones 887 in good yield (Equation 357) <2003JA9610>. [Pg.617]

Formation of the complexes 47c, 47e, and 47t and their smooth reaction with carbon monoxide sheds some light on the mechanism of [6 + 4] cycloaddition in the coordination sphere of chromium. Obviously, the photoreaction proceeds stepwise. First, the diene is coordinated to an activated complex (45) and forms tricarbonyl-t/4-8,8-dimethylheptafulvene-t/2-... [Pg.328]

Murakami and Ito have highlighted the utility of cationic Me-DuPhos-Rh catalysts for novel asymmetric (4 + 1) cycloaddition reactions between vinylallenes and carbon monoxide.68 Complex cyclopentenone derivatives such as 64 have been constructed in a single step and with enantiose-lectivities up to 95% in this process (Scheme 13.22). [Pg.263]

An interesting example of photochemically-mediated [4+2] cycloaddition was found for 115 (Sch. 26), which does not undergo cycloaddition with butadiene 3 thermally. Irradiation is believed to transiently expel carbon monoxide, leading to co-ordination of butadiene to the iron (116). The diene is then delivered intramolecularly, to form 117 [80]. [Pg.252]


See other pages where Carbon monoxide, 5 + 1-cycloaddition with is mentioned: [Pg.22]    [Pg.36]    [Pg.63]    [Pg.196]    [Pg.26]    [Pg.402]    [Pg.175]    [Pg.5]    [Pg.115]    [Pg.121]    [Pg.167]    [Pg.94]    [Pg.419]    [Pg.1079]    [Pg.168]    [Pg.327]    [Pg.175]    [Pg.151]    [Pg.245]   
See also in sourсe #XX -- [ Pg.520 ]




SEARCH



Carbon cycloaddition

Carbon cycloadditions

Cycloaddition with

© 2024 chempedia.info