Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon fibers densities

The quality of the carbon fibers was evaluated mainly from the tensile properties, modulus E and tensile strength a. Sonic modulus was used instead of tensile modulus, because the method appeared to be more reliable. Apart from E, and a, the carbon fiber density q was determined. [Pg.39]

Boron fibers have at their core a tungsten (ca. 12 to 15 pm in diameter) or carbon fiber, which serves as a substrate during manufacture. Due to the high density of tungsten (19.3 Mg/m- ), a fiber thickness of 100 to 200 pm is necessary to achieve a low overall density for the fiber (ca. 2.6 Mg/m ). Therefore, latterly deposition on carbon fibers (density 1.8 Mg/m, diameter 8 to 10 pm) has been favored. This development has been driven by their commercial availability of carbon fibers. In addition to their low density (ca. 2.0 to 2.3 Mg/m- ) these fibers exhibit a low surface roughness and low internal stress. [Pg.387]

Process. Any standard precursor material can be used, but the preferred material is wet spun Courtaulds special acrylic fiber (SAF), oxidized by RK Carbon Fibers Co. to form 6K Panox B oxidized polyacrylonitrile (PAN) fiber (OPF). This OPF is treated ia a nitrogen atmosphere at 450—750°C, preferably 525—595°C, to give fibers having between 69—70% C, 19% N density less than 2.5 g/mL and a specific resistivity under 10 ° ohm-cm. If crimp is desired, the fibers are first knit iato a sock before heat treating and then de-knit. Controlled carbonization of precursor filaments results ia a linear Dow fiber (LDF), whereas controlled carbonization of knit precursor fibers results ia a curly carbonaceous fiber (EDF). At higher carbonizing temperatures of 1000—1400°C the fibers become electrically conductive (22). [Pg.69]

Carbon Composites. Cermet friction materials tend to be heavy, thus making the brake system less energy-efficient. Compared with cermets, carbon (or graphite) is a thermally stable material of low density and reasonably high specific heat. A combination of these properties makes carbon attractive as a brake material and several companies are manufacturing carbon fiber—reinforced carbon-matrix composites, which ate used primarily for aircraft brakes and race cats (16). Carbon composites usually consist of three types of carbon carbon in the fibrous form (see Carbon fibers), carbon resulting from the controlled pyrolysis of the resin (usually phenoHc-based), and carbon from chemical vapor deposition (CVD) filling the pores (16). [Pg.273]

Carbon Composites. In this class of materials, carbon or graphite fibers are embedded in a carbon or graphite matrix. The matrix can be formed by two methods chemical vapor deposition (CVD) and coking. In the case of chemical vapor deposition (see Film deposition techniques) a hydrocarbon gas is introduced into a reaction chamber in which carbon formed from the decomposition of the gas condenses on the surface of carbon fibers. An alternative method is to mold a carbon fiber—resin mixture into shape and coke the resin precursor at high temperatures and then foUow with CVD. In both methods the process has to be repeated until a desired density is obtained. [Pg.275]

Eig. 10. The variation of the density of carbon-fiber reinforced epoxy resin with the fiber volume fraction, based on the rule of mixtures. [Pg.10]

Low density, carbon fiber-carbon binder composites are fabricated from a variety of carbon fibers, including fibers derived from rayon, polyacrylonitrile (PAN), isotropic pitch, and mesophase pitch. The manufacture, structure, and properties of carbon fibers have been thoroughly reviewed elsewhere [3] and. therefore, are... [Pg.169]

Fig. 18. The temperature dependence of the thermal conductivity of hybrid carbon fiber monoliths measured in the to fibers direction at two densities. Fig. 18. The temperature dependence of the thermal conductivity of hybrid carbon fiber monoliths measured in the to fibers direction at two densities.
Short fiber reinforcement of TPEs has recently opened up a new era in the field of polymer technology. Vajrasthira et al. [22] studied the fiber-matrix interactions in short aramid fiber-reinforced thermoplastic polyurethane (TPU) composites. Campbell and Goettler [23] reported the reinforcement of TPE matrix by Santoweb fibers, whereas Akhtar et al. [24] reported the reinforcement of a TPE matrix by short silk fiber. The reinforcement of thermoplastic co-polyester and TPU by short aramid fiber was reported by Watson and Prances [25]. Roy and coworkers [26-28] studied the rheological, hysteresis, mechanical, and dynamic mechanical behavior of short carbon fiber-filled styrene-isoprene-styrene (SIS) block copolymers and TPEs derived from NR and high-density polyethylene (HOPE) blends. [Pg.353]

Figure 17.17 Schematic representation of a single-compartment glucose/02 enzyme fuel cell built from carbon fiber electrodes modified with Os -containing polymers that incorporate glucose oxidase at the anode and bilirubin oxidase at the cathode. The inset shows power density versus cell potential curves for this fuel cell operating in a quiescent solution in air at pH 7.2, 0.14 M NaCl, 20 mM phosphate, and 15 mM glucose. Parts of this figure are reprinted with permission from Mano et al. [2003]. Copyright (2003) American Chemical Society. Figure 17.17 Schematic representation of a single-compartment glucose/02 enzyme fuel cell built from carbon fiber electrodes modified with Os -containing polymers that incorporate glucose oxidase at the anode and bilirubin oxidase at the cathode. The inset shows power density versus cell potential curves for this fuel cell operating in a quiescent solution in air at pH 7.2, 0.14 M NaCl, 20 mM phosphate, and 15 mM glucose. Parts of this figure are reprinted with permission from Mano et al. [2003]. Copyright (2003) American Chemical Society.
Nitrogen adsorption isotherms were measured with a sorbtometer Micromeretics Asap 2010 after water desorption at 130°C. The distribution of pore radius was obtained from the adsorption isotherms by the density functional theory. Electron microscopy study was carried out with a scanning electron microscope (SEM) HitachiS800, to image the texture of the fibers and with a transmission electron microscope (TEM) JEOL 2010 to detect and measure metal particle size. The distribution of particles inside the carbon fibers was determined from TEM views taken through ultramicrotome sections across the carbon fiber. [Pg.56]

Affected by multiple scattering are, in particular, porous materials with high electron density (e.g., graphite, carbon fibers). The multiple scattering of isotropic two-phase materials is treated by Luzatti [81] based on the Fourier transform theory. Perret and Ruland [31,82] generalize his theory and describe how to quantify the effect. For the simple structural model of Debye and Bueche [17], Ruland and Tompa [83] compute the effect of the inevitable multiple scattering on determined structural parameters of the studied material. [Pg.89]

Detailed accounts of fibers and carbon-carbon composites can be found in several recently published books [1-5]. Here, details of novel carbon fibers and their composites are reported. The manufacture and applications of adsorbent carbon fibers are discussed in Chapter 3. Active carbon fibers are an attractive adsorbent because their small diameters (typically 6-20 pm) offer a kinetic advantage over granular activated carbons whose dimensions are typically 1-5 mm. Moreover, active carbon fibers contain a large volume of mesopores and micropores. Current and emerging applications of active carbon fibers are discussed. The manufacture, structure and properties of high performance fibers are reviewed in Chapter 4, whereas the manufacture and properties of vapor grown fibers and their composites are reported in Chapter 5. Low density (porous) carbon fiber composites have novel properties that make them uniquely suited for certain applications. The properties and applications of novel low density composites developed at Oak Ridge National Laboratory are reported in Chapter 6. [Pg.19]


See other pages where Carbon fibers densities is mentioned: [Pg.6]    [Pg.6]    [Pg.79]    [Pg.5]    [Pg.204]    [Pg.1]    [Pg.4]    [Pg.6]    [Pg.7]    [Pg.7]    [Pg.4]    [Pg.7]    [Pg.10]    [Pg.12]    [Pg.95]    [Pg.95]    [Pg.96]    [Pg.99]    [Pg.169]    [Pg.172]    [Pg.181]    [Pg.191]    [Pg.290]    [Pg.439]    [Pg.11]    [Pg.114]    [Pg.383]    [Pg.532]    [Pg.303]    [Pg.422]    [Pg.422]    [Pg.503]    [Pg.374]    [Pg.415]    [Pg.33]    [Pg.116]    [Pg.116]    [Pg.117]   
See also in sourсe #XX -- [ Pg.257 , Pg.258 ]




SEARCH



Carbon density

© 2024 chempedia.info