Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide natural sources

Carbon dioxide Natural and industrial potential carbon sources exist volcanic activity, living organism respiration, fossil fuel combustion, cement production, changes in land use. Natural CO2 fluxes into and out of the atmosphere exceed the human contribution by more than an order of magnitude. The rise in atmospheric CO2 concentration closely parallels the emission history from fossil fuels and land use changes. [Pg.10]

With all components in the ideal gas state, the standard enthalpy of the process is exothermic by —165 kJ (—39.4 kcal) per mole of methane formed. Biomass can serve as the original source of hydrogen, which then effectively acts as an energy carrier from the biomass to carbon dioxide, to produce substitute (or synthetic) natural gas (SNG) (see Euels, synthetic). [Pg.9]

Fuel. Natural gas is used as a primary fuel and source of heat energy throughout the iadustrialized countries for a broad range of residential, commercial, and iadustrial appHcations. The methane and other hydrocarbons react readily with oxygen to release heat by forming carbon dioxide and water through a series of kinetic steps that results ia the overall reaction,... [Pg.174]

Magnesium sulfate heptahydrate may be prepared by neutralization of sulfuric acid with magnesium carbonate or oxide, or it can be obtained directly from natural sources. It occurs abundantly as a double salt and can also be obtained from the magnesium salts that occur in brines used for the extraction of bromine (qv). The brine is treated with calcium hydroxide to precipitate magnesium hydroxide. Sulfur dioxide and air are passed through the suspension to yield magnesium sulfate (see Chemicals frombrine). Magnesium sulfate is a saline cathartic. [Pg.202]

An extensive source of natural pollutants is the plants and trees of the earth. Even though these green plants play a large part in the conversion of carbon dioxide to oxygen through photosynthesis, they are still the major source of hydrocarbons on the planet. The familiar blue haze over forested areas is nearly all from the atmospheric reactions of the volatile organics... [Pg.74]

Combustion processes are the most important source of air pollutants. Normal products of complete combustion of fossil fuel, e.g. coal, oil or natural gas, are carbon dioxide, water vapour and nitrogen. However, traces of sulphur and incomplete combustion result in emissions of carbon monoxide, sulphur oxides, oxides of nitrogen, unburned hydrocarbons and particulates. These are primary pollutants . Some may take part in reactions in the atmosphere producing secondary pollutants , e.g. photochemical smogs and acid mists. Escaping gas, or vapour, may... [Pg.502]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

Voids and Honti (1974) described the incident. A carbon dioxide purification plant in Rdpcelak, Hungary, produced carbon dioxide from natural sources. It was liquefied and supercooled after purification by ammonia refrigeration, then stored in tanks under a pressure of 15 bar (220 psi) at a temperature of — 30°C ( —22°F). [Pg.27]

Natural gas will continue to be substituted for oil and coal as primary energy source in order to reduce emissions of noxious combustion products particulates (soot), unburned hydrocarbons, dioxins, sulfur and nitrogen oxides (sources of acid rain and snow), and toxic carbon monoxide, as well as carbon dioxide, which is believed to be the chief greenhouse gas responsible for global warming. Policy implemented to curtail carbon emissions based on the perceived threat could dramatically accelerate the switch to natural gas. [Pg.827]

The effect of pH on the corrosion of zinc has already been mentioned (p. 4.170). In the range of pH values from 5 -5 to 12, zinc is quite stable, and since most natural waters come within this range little difficulty is encountered in respect of pH. The pH does, however, affect the scale-forming properties of hard water (see Section 2.3 for a discussion of the Langelier index). If the pH is below the value at which the water is in equilibrium with calcium carbonate, the calcium carbonate will tend to dissolve rather than form a scale. The same effect is produced in the presence of considerable amounts of carbon dioxide, which also favours the dissolution of calcium carbonate. In addition, it is important to note that small amounts of metallic impurities (particularly copper) in the water can cause quite severe corrosion, and as little as 0-05 p.p.m. of copper in a domestic water system can be a source of considerable trouble with galvanised tanks and pipes. [Pg.819]

The amount of hardness present in natural surface and groundwaters depends to a large extent on the action of dissolved carbon dioxide in rainwater on the watershed s geological formations (such as limestone, dolomite, gypsum, or magnesite). The dissolved hardness levels remain relatively low because of the sparingly soluble nature of the salts formed. Typically, MU water sources initially contain anywhere from 5... [Pg.221]

The natural supply source of carbon dioxide in MU water is primarily calcium bicarbonate alkalinity [Ca(HC03)2], which reacts under conditions of heat to form insoluble calcium carbonate and carbon dioxide. Because the precipitated carbonate cannot decompose further, no additional carbon dioxide is released. As a result, the total amount of... [Pg.514]


See other pages where Carbon dioxide natural sources is mentioned: [Pg.89]    [Pg.292]    [Pg.612]    [Pg.469]    [Pg.134]    [Pg.210]    [Pg.218]    [Pg.226]    [Pg.5]    [Pg.9]    [Pg.437]    [Pg.481]    [Pg.4]    [Pg.218]    [Pg.238]    [Pg.199]    [Pg.18]    [Pg.20]    [Pg.21]    [Pg.2411]    [Pg.73]    [Pg.314]    [Pg.17]    [Pg.225]    [Pg.459]    [Pg.265]    [Pg.159]    [Pg.5]    [Pg.241]    [Pg.363]    [Pg.475]    [Pg.541]    [Pg.793]    [Pg.890]    [Pg.112]    [Pg.141]    [Pg.338]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Carbon dioxide sources

Carbon natural

Carbon source

Natural sources

© 2024 chempedia.info