Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical carbon dioxide

A variety of instmments are available to analyze carbon monoxide in gas streams from 1 ppm to 90%. One group of analyzers determines the concentration of carbon monoxide by measuring the intensity of its infrared stretching frequency at 2143 cm . Another group measures the oxidation of carbon monoxide to carbon dioxide electrochemically. Such instmments are generally lightweight and weU suited to appHcations requiring portable analyzers. Many analyzers are equipped with alarms and serve as work area monitors. [Pg.53]

Rowinski, P. and R. Bilewicz (2001). Carbon dioxide electrochemical sensor based on lipid cubic phase containing tetraazamacrocyclic complexes of Ni(II). Materials Science and Engineering C 18(1-2), 177-183. [Pg.250]

Electrochemical Behavior of Titanium Electrochemical Investigations of the Interfacial Behavior of Proteins Electrochemical Mechanisms and the Control of Biological Growth Processes Electrochemical and Photoelectrochemical Reduction of Carbon Dioxide Electrochemical Processes at Biological Interfaces... [Pg.469]

The conventional electrochemical reduction of carbon dioxide tends to give formic acid as the major product, which can be obtained with a 90% current efficiency using, for example, indium, tin, or mercury cathodes. Being able to convert CO2 initially to formates or formaldehyde is in itself significant. In our direct oxidation liquid feed fuel cell, varied oxygenates such as formaldehyde, formic acid and methyl formate, dimethoxymethane, trimethoxymethane, trioxane, and dimethyl carbonate are all useful fuels. At the same time, they can also be readily reduced further to methyl alcohol by varied chemical or enzymatic processes. [Pg.220]

New Synthesis. Many attempts have been made to synthesize oxaUc acid by electrochemical reduction of carbon dioxide in either aqueous or nonaqueous electrolytes (53—57). For instance, oxaUc acid is prepared from CO2 as its Zn salt in an undivided ceU with Zn anodes and stainless steel cathodes ia acetonitrile containing (C4H2)4NC104 and current efficiency of >90% (53). Micropilot experiments and a process design were also made. [Pg.460]

E. Petei, ia S. B. Patnek, ed., Electrochem. Electrocatal Read Carbon Dioxide, Elseviei, Amsteidam, the Nethedands, 1993, pp. 68—93. [Pg.186]

A newer technology for the manufacture of chromic acid uses ion-exchange (qv) membranes, similar to those used in the production of chlorine and caustic soda from brine (76) (see Alkali and cm ORiNE products Chemicals frombrine Mep rane technology). Sodium dichromate crystals obtained from the carbon dioxide option of Figure 2 are redissolved and sent to the anolyte compartment of the electrolytic ceU. Water is loaded into the catholyte compartment, and the ion-exchange membrane separates the catholyte from the anolyte (see Electrochemical processing). [Pg.138]

The electrochemical conversions of conjugated dienes iato alkadienedioic acid have been known for some time. Butadiene has been converted iato diethyl-3,7-decadiene-l,10,dioate by electrolysis ia a methanol—water solvent (67). An improvement described ia the patent Hterature (68) uses an anhydrous aprotic solvent and an electrolyte along with essentially equimolar amounts of carbon dioxide and butadiene a mixture of decadienedioic acids is formed. This material can be hydrogenated to give sebacic acid. [Pg.63]

Carbon monoxide and carbon dioxide can be measured using the FTIR techniques (Fourier transform infrared techniques see the later section on the Fourier transform infrared analyzer). Electrochemical cells have also been used to measure CO, and miniaturized optical sensors are available for CO 2 monitoring. [Pg.1297]

The major electrochemical reaction at the anode surface is oxygen and chlorine evolution coupled with oxidation of the active carbon to carbon dioxide. Eventually all the carbon is removed from the anode coating and this allows perforation of the copper conductor leading to ultimate anode failure. [Pg.189]

Taniguchi, I. Electrochemical and Photoelectrochemical Reduction of Carbon Dioxide 20... [Pg.609]

The reduction of carbon dioxide is another of the basic electrochemical reactions that has been studied at modified electrodes. The reduction at Co or Ni phthalocyanine in acidic solution yields formic acid or carbon monoxide A very high selectiv-... [Pg.67]

The electrochemical results suggested to explore the possibility of creating a C-C bond between the electrogenerated a-carbanion fi and carbon nucleophiles. Results of practical importance have hitherto been obtained upon electroreduction of 2-bromoisobutyramides in acetonitrile at Hg or Pt cathodes, in the presence of carbon dioxide and an alkylating agent. The enolate-amide fi undergoes quantitative carboxy-alkylation, to yield ester amides of 2,2-dimethylmalonic acid (ref. 16). [Pg.165]

The transient response of DMFC is inherently slower and consequently the performance is worse than that of the hydrogen fuel cell, since the electrochemical oxidation kinetics of methanol are inherently slower due to intermediates formed during methanol oxidation [3]. Since the methanol solution should penetrate a diffusion layer toward the anode catalyst layer for oxidation, it is inevitable for the DMFC to experience the hi mass transport resistance. The carbon dioxide produced as the result of the oxidation reaction of methanol could also partly block the narrow flow path to be more difScult for the methanol to diflhise toward the catalyst. All these resistances and limitations can alter the cell characteristics and the power output when the cell is operated under variable load conditions. Especially when the DMFC stack is considered, the fluid dynamics inside the fuel cell stack is more complicated and so the transient stack performance could be more dependent of the variable load conditions. [Pg.593]

Bockris O MJ, Wass JC (1989) The photoelectrocatalytic reduction of carbon dioxide. J Electrochem Soc 136 2521-2528... [Pg.303]

Kuwabata S, Nishida K, Tsuda R, Inoue H, Yoneyama H (1994) Photochemical reduction of carbon dioxide to methanol using ZnS microcrystaUite as a photocatalyst in the presence of methanol dehydrogenase. J Electrochem Soc 141 1498-1503... [Pg.303]

In situ analysis of the reaction products can also be carried out by mass spectrometry, using the differential electrochemical mass spectrometry (DBMS) technique.This technique permits the detection of gaseous products since they are produced and captured through a porous electrode. It has been confirmed that carbon dioxide is the main reaction product. With this technique, it is also possible to determine the production of CO2... [Pg.75]

The complete electrochemical oxidation of methanol to carbon dioxide. [Pg.284]

Electrochemical reduction of carbon dioxide has found no extensive application so far, yet it is of great interest for scientists in the fields of theoretical and applied electrochemistry. To a certain extent, it is analogous to the photochemical carbon dioxide reduction, but it involves no chlorophyll and yields simpler products. In recent years some books and reviews on this topic have been published (e.g., Taniguchi, 1989 Sullivan et al., 1993 Bagotsky and Osetrova, 1995). [Pg.291]

Electrochemical reduction of carbon dioxide is usually conducted in aqueous or nonaqueous electrolyte solutions at cathodes made of various materials. As a result, various organic substances can form. The most common reactions are as follows ... [Pg.291]

For synthetic fuels or energy-storage media to be produced electrochemically, it is necessary that the carbon dioxide reduction be conducted at potentials only slightly (not more than by 0.2 V) more negative than the corresponding equilibrium potential. To do this requires extensive research aiming at refining the catalysts and the conditions for this process. [Pg.294]

Summing up, it can be said that the reaction of the electrochemical reduction of carbon dioxide will be the subject of painstaking research for a long time to come. In the future this reaction is very likely to play an important role in the electrochemical industry. [Pg.294]

Bagotsky, V. S., and N. Osetrova, Electrochemical reduction of carbon dioxide, Russ. J. [Pg.296]

Sullivan, B. P, K. Krist, and H. E. Guard, Eds., Electrochemical and Electrocatalytic Reactions of Carbon Dioxide, Elsevier, Amsterdam, 1993. [Pg.296]

Taniguchi, L, Electrochemical and photoelectrochemical reduction of carbon dioxide, in Modem Aspects of Electrochemistry, J. Bockris et al., Eds., Vol. 20, Kluwer, New York, 1989, p. 327. [Pg.296]

Another indirect electrochemical heahng method involves the artificial kidney machine, with electrochemical regeneration of the dialysis solution. The common kidney machine is a dialyzer in which blood of the patient (who suffers from kiduey insufficiency) and a dialysis solution are pumped arouud iu two differeut loops, aud carbamide (urea), creatinine, and other metabolites are transferred by dialysis into the dialysis solution. For complete extraction of the metabolites, each hemodialysis session requires almost 200 L of this solution to be pumped through, so hemodialysis cau only be performed in a hospital setting. In machines equipped with electrochemical regeueratiou, the dialysis solutiou is ruu iu a closed loop, iucludiug au electrolyzer in which the carbamide is oxidized to nitrogen and carbon dioxide. The solution volume needed in this loop is rather small, so that portable kidney machines could become a reality. [Pg.412]

Great promise exists in the use of graphitic carbons in the electrochemical synthesis of hydrogen peroxide [reaction (15.21)] and in the electrochemical reduction of carbon dioxide to various organic products. Considering the diversity in structures and surface forms of carbonaceous materials, it is difficult to formulate generalizations as to the influence of their chemical and electron structure on the kinetics and mechanism of electrochemical reactions occurring at carbon electrodes. [Pg.543]

The electrolytes Na", and Cl are second only to glucose in being the most frequently run hospital tests. Many clinical chemistry analyzers now contain an ISE module for electrolyte analysis. Most commonly the module will consist of a Na -glass electrode, a valinomycin/PVC electrode, a Ag/AgCl pellet or a quaternary ammonium ion/PVC electrode and a reference electrode. A selective electrode for the bicarbonate ion continues to elude workers in the field. An indirect measurement of HCOf must be made. The sample is usually reacted with acid to evolve carbon dioxide gas which is measured with a traditional Severinghaus type CO2 electrode. Alternatively, the sample is treated with base to convert HCO to CO3 and a carbonate ion-selective electrode is used In this manner, the complete primary electrolyte profile is obtained electrochemically. [Pg.61]


See other pages where Electrochemical carbon dioxide is mentioned: [Pg.517]    [Pg.470]    [Pg.17]    [Pg.517]    [Pg.470]    [Pg.17]    [Pg.198]    [Pg.103]    [Pg.102]    [Pg.187]    [Pg.206]    [Pg.23]    [Pg.129]    [Pg.43]    [Pg.519]    [Pg.409]    [Pg.412]    [Pg.522]    [Pg.553]    [Pg.51]    [Pg.83]    [Pg.20]    [Pg.373]   


SEARCH



Electrochemical carbon

© 2024 chempedia.info