Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes, generation insertion reactions

CHi generated by photolysis of CH2N2 in the liquid phase is indiscriminate—totally non-selective—in its reactivity (p. 199). CH, generated in other ways and other carbenes are less reactive and insert in the order tertiary > secondary > primary.232 Halocarbenes insert much less readily, though a number of instances have been reported.233 Nevertheless, even for less reactive carbenes, the insertion reaction has seldom been used for synthetic purposes.234 The carbenes can be generated in any of the ways mentioned in Chapter 5 (p. 198). For the similar insertion of nitrenes, see 2-12. [Pg.604]

Photolytically generated carbene, as mentioned above, undergoes a variety of undiscriminated addition and insertion reactions and is therefore of limited synthetic utility. The discovery (3) of the generation of carbenes by the zinc-copper couple, however, makes carbene addition to double bonds synthetically useful. The iodo-methylzinc iodide complex is believed to function by electrophilic addition to the double bond in a three-center transition state giving essentially cis addition. Use of the... [Pg.116]

The most common rearrangement reaction of alkyl carbenes is the shift of hydrogen, generating an alkene. This mode of stabilization predominates to the exclusion of most intermolecular reactions of aliphatic carbenes and often competes with intramolecular insertion reactions. For example, the carbene generated by decomposition of the tosylhydrazone of 2-methylcyclohexanone gives mainly 1- and 3-methylcyclohexene rather than the intramolecular insertion product. [Pg.940]

The photoelimination of nitrogen from diazo compounds provides a simple and versatile route for the generation of carbenes, and in certain instances, insertion reactions of carbenes can be employed in the synthesis of heterocycles. Carbenes are believed to be involved at least in part in the photochemically induced conversion of N,N-diethyldiazoacetamide (439) into the y-lactam 440 and the /Mactam 441,365 and a similar approach has been successfully employed in the synthesis of a carbapen-2-em366 and of 7-methylcephalosporin analogues.367 Carbene insertion of a different type has been observed on irradiation of the 6-anilino-5-diazouracils 442 to give the indolo[2,3-d]pyrimidines 443.368 Ring contractions in heterocycles... [Pg.311]

The difference in reactivity between isoprenol and isoprenyloxide, methal-lyl methyl ether and methallyloxide were investigated in the reaction with (phenylthio)carbene generated under phase-transfer conditions. With isoprenol, (phenylthio)methyl ether (41%) was the major product, whereas with methyl ether cyclopropanation (36%) was the sole reaction.1519 With alkoxides, in contrast, the major product was the C-H insertion product (45%) and (phenyl-... [Pg.294]

Vinylidenecarbene or allenylidene3 (R)2C=C=C has a lance-shaped, unsubstituted and sp-hybridized carbene center and, therefore, will not be easily subject to steric hindrance in its insertion reactions. On this assumption, (2-methyljpropenylidenecarbene or its carbenoid was chosen as a prototype of typical vinylidenecarbenes and its insertion reaction with several different types of alkoxides was investigated by employing two methods (A and B, Scheme 10) for carbene generation.20 The insertion products 20 were obtained almost exclusively except lithium allyloxide (Table 4, entry 10).21 By-products such as propargyl ether and allenyl ether were not formed at all. To be noted here, in... [Pg.296]

Since alkyllithium compounds and their carbanions have an isoelectronic structure with alkoxides, their reaction behavior with carbenes is expected to be similar to that of alkoxides, showing enhanced reactivity in both C-H insertion and hydride abstraction.35 In this reaction, the hydride abstraction cannot be followed by recombination and, therefore, can be differentiated from the insertion. Indeed, the reaction of alkyllithium compounds 70 or nitrile anions (see Section IV.B) with ethyl(phenylthio)carbenoid, which is generated by the reaction of 1-chloropropyl sulfide 69 with BuLi, takes place at the -position of 70 more or less in a similar manner giving both insertion product 71 and hydride abstraction products 72 and 73, respectively. This again supports a general rule C-H bonds at the vicinal position of a negatively charged atom are activated toward carbene insertion reactions (Scheme 22). [Pg.309]

Most of the carbenes examined in this study have more or less a carbenoid nature because they are generated from halogenated precursors and strong base. In this regard, it still remains as an intriguing problem to verify experimentally the higher electrophilicity and selectivity of carbenoids41,42 in comparison to those of free carbenes in the insertion reaction. [Pg.314]

A second process that has a central position in the analysis of the chemical properties of carbenes is their reaction with hydrocarbons. As is the case for alcohols, singlet and triplet carbenes react with hydrocarbons in distinctive ways. It has long been held that very electrophilic singlet carbenes can insert directly into carbon-hydrogen bonds (11) (Kirmse, 1971). On the other hand, triplet carbenes are believed to abstract hydrogen atoms to generate radicals that go on to combine and disproportionate in subsequent steps (12)... [Pg.328]

Closs and Trifunac, 1970 Baldwin and Andrist, 1971 Lepley and Closs, 1972 Bethell and McDonald, 1977). The formation of free radicals from aromatic carbenes is often easily detected by the fast laser spectroscopic techniques discussed earlier. The radicals generally have characteristic absorption spectra and reactivity patterns that make their identification certain. The direct insertion reaction of singlet carbenes is not expected to generate free radicals. [Pg.328]

Compared with primary and secondary amines, tertiary amines are virtually unreac-tive towards carbenes and it has been demonstrated that they behave as phase-transfer catalysts for the generation of dichlorocarbene from chloroform. For example, tri-n-butylamine and its hydrochloride salt have the same catalytic effect as tetra-n-butylammonium chloride in the generation of dichlorocarbene and its subsequent insertion into the C=C bond of cyclohexene [20]. However, tertiary amines are generally insufficiently basic to deprotonate chloroform and the presence of sodium hydroxide is normally required. The initial reaction of the tertiary amine with chloroform, therefore, appears to be the formation of the A -ylid. This species does not partition between the two phases and cannot be responsible for the insertion reaction of the carbene in the C=C bond. Instead, it has been proposed that it acts as a lipophilic base for the deprotonation of chloroform (Scheme 7.26) to form a dichloromethylammonium ion-pair, which transfers into the organic phase where it decomposes to produce the carbene [21]. [Pg.348]

Cycloreversion of four-membered metallacycles is the most common method for the preparation of high-valent titanium [26,27,31,407,599-606] and zirconium [599,601] carbene complexes. These are usually very reactive, nucleophilic carbene complexes, with a strong tendency to undergo C-H insertion reactions or [2 -F 2] cycloadditions to alkenes or carbonyl compounds (see Section 3.2.3). Figure 3.31 shows examples of the generation of titanium and zirconium carbene complexes by [2 + 2] cycloreversion. [Pg.100]

Table 3.7. Intramolecular C-H insertion reaction of cationic iron carbene complexes generated in situ by S-alkylation of 1-(phenylthio)alkyl complexes (see Experimental Procedure 3.2.3). Table 3.7. Intramolecular C-H insertion reaction of cationic iron carbene complexes generated in situ by S-alkylation of 1-(phenylthio)alkyl complexes (see Experimental Procedure 3.2.3).
Electrophilic carbene complexes generated from diazoalkanes and rhodium or copper salts can undergo 0-H insertion reactions and S-alkylations. These highly electrophilic carbene complexes can, moreover, also undergo intramolecular rearrangements. These reactions are characteristic of acceptor-substituted carbene complexes and will be treated in Section 4.2. [Pg.169]

Carbenes and transition metal carbene complexes are among the few reagents available for the direct derivatization of simple, unactivated alkanes. Free carbenes, generated, e.g., by photolysis of diazoalkanes, are poorly selective in inter- or intramolecular C-H insertion reactions. Unlike free carbenes, acceptor-substituted carbene complexes often undergo highly regio- and stereoselective intramolecular C-H insertions into aliphatic and aromatic C-H bonds [995,1072-1074,1076,1085,1086],... [Pg.179]

Table 4.19. C-O Bond insertion reactions of acceptor-substituted carbene eomplexes generated from diazocarbonyl compounds. Table 4.19. C-O Bond insertion reactions of acceptor-substituted carbene eomplexes generated from diazocarbonyl compounds.
This reaction apparently proceeds by way of the normal phosphonate condensation product, the diazoalkylidene, which then spontaneously loses nitrogen to form the transient alkylidene car-bene. Careful work showed that, after statistical corrections were applied, the reactivity of a C-H bond toward insertion was approximately 0.003 for primary C-H bonds (methyl), 1.0 for secondary C-H bonds (methylene), 7.5 for benzylic (methylene) C-H bonds and 18.6 for tertiary C-H bonds. These relative reactivities are very similar to those previously observed for intramolecular C-H insertion by an alkylidene carbenoid generated from a vinyl bromide27. It was shown subsequently that the alkylidene carbene insertion reaction proceeds with retention of absolute configuration28. Using this approach, (l )-3-dimethyl-3-phenyl-l-cyclopentene and (i )-4-methyl-4-phenyl-2-cyclohexcnonc were prepared in high enantiomeric purity. [Pg.1134]

In contrast to considerations of 50 years ago, today carbene and nitrene chemistries are integral to synthetic design and applications. Always a unique methodology for the synthesis of cyclopropane and cyclopropene compounds, applications of carbene chemistry have been extended with notable success to insertion reactions, aromatic cycloaddition and substitution, and ylide generation and reactions. And metathesis is in the lexicon of everyone planning the synthesis of an organic compound. Intramolecular reactions now extend to ring sizes well beyond 20, and insertion reactions can be effectively and selectively implemented even for intermolecular processes. [Pg.586]

The diverse chemistry of carbenes is beyond the scope of this account, but a few typical reactions are shown here to illustrate the usefulness of the photochemical generation of these reactive species. A carbene can insert into a C—H bond, and this finds application in the reaction of an a-diazoamide to produce a P-lactam (5.29). Carbenes derived from o-diazoketones can rearrange to ketenes, and thus a route is opened up to ring-contraction for making more highly strained systems <5.301. Carbenes also react with alkenes, often by cycloaddition to yield cyclopropanes in a process that can be very efficient (5.31) and highly stereoselective (5.321. [Pg.152]

Phenyl azides (azidoarenes), introduced by Knowles and co-workers,[8 9] are the most abundantly used class of photophores. Examples include 4-azidophenylalanine (1) and 4-azido-3-nitrophenylalanine (4) (Scheme 1). Irradiation (<300 nm) of phenyl azide (13) generates nitrene 14, electrophilic in nature, which prefers insertion into O—H and N—H bonds over C—H bonds. Nitrenes are considerably less reactive and, therefore, more selective than carbenes. Nevertheless, due to their short life span (0.1-1 ms) they react indiscriminately with virtually any amino add residue in the target protein.1101 Intramolecular rearrangements do not compete effectively with intermolecular proton abstraction and insertion reactions (Scheme 4). [Pg.89]

CARBENE. The name quite generally used for the methylene radical, CH,. It is formed during a number of reactions. Thus the flash photochemical decomposition of ketene (CH2=C=0) has been shown to proceed in two stages. The first yields carbon monoxide and CHj. the latter then reacting with more ketene to form ethylene and carbon monoxide. Carbcne reacts by insertion into a C- H bond to form a C-CH, bond. Thus carbene generated from ketene reacts with propane to form, i-butane and isobutane. Carbene generated by pyrolysis uf diazomethane reacts with diethyl ether to form ethylpropyl ether and ethylisopropyl ether. [Pg.277]


See other pages where Carbenes, generation insertion reactions is mentioned: [Pg.531]    [Pg.289]    [Pg.103]    [Pg.251]    [Pg.782]    [Pg.789]    [Pg.235]    [Pg.207]    [Pg.208]    [Pg.22]    [Pg.69]    [Pg.72]    [Pg.289]    [Pg.182]    [Pg.324]    [Pg.209]    [Pg.130]    [Pg.214]    [Pg.389]    [Pg.274]    [Pg.284]    [Pg.421]    [Pg.473]    [Pg.553]    [Pg.200]    [Pg.596]    [Pg.259]   
See also in sourсe #XX -- [ Pg.289 , Pg.290 , Pg.803 , Pg.804 , Pg.805 , Pg.1234 ]




SEARCH



Carbene generation

Carbene insertion

Carbene insertion reaction

Carbene insertion reactions carbenes

Carbene reactions

Carbenes generation reactions

Carbenes insertion

Carbenes reactions

Generation reactions

Insertion reactions

© 2024 chempedia.info