Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary development

There are several methods of buffer and capillary surface modification used to prevent electrostatic interactions. Two modes have been examined mn buffer with pH >10 in the uncoated capillary and anionic polymer coating capillary, developed in lAI. [Pg.100]

Electroosmosis (p. 167) plays a very significant role in hpce because the interior surface of a quartz capillary develops a negative charge when in contact with aqueous solutions due to the ionization of surface silanol groups (Si-OH) above pH 4 and the adsorption of anions. As a result, a layer of cations from the bulk solution builds up close to the wall to maintain a charge balance by forming an electrical double-layer . The high fields employed... [Pg.536]

Gas chromatography is not an identification method the components must be identified after their separation by capillary column. This is done by coupling to the column a mass spectrometer by which the components can be identified with the aid of spectra libraries. However tbe analysis takes a long time (a gasoline contains aboutTwo hundred components) so it is not practical to repeat it regularly. Furthermore, analysts have developed te hpiques for identifying... [Pg.73]

Another phenomenon is so called two-side filling of one-side closed conical capillaries with liquid [5]. On the one hand the more penetrant is trapped by the defect the wider indication will appear. Contrariwise it is almost impossible to extract a penetrant from the completely filled surface defects by dry developer [6]. In this study we propose the theory of the phenomenon. Besides experimental results of the investigation of two-side filling with various penetrants of conical capillaries are presented. Practical recommendations to optimize liquid penetrant testing process are proposed. [Pg.613]

To clear up a role of two-side filling with liquids of dead-end capillaries in the practice of PT, we ve carried out some special experiments. It was established some years ago that it s almost impossible to reveal small defects applying dry powder developer in the case when defect s hollows are completely filled with a penetrant. But just such a situation one... [Pg.617]

Bianco and Marmur [143] have developed a means to measure the surface elasticity of soap bubbles. Their results are well modeled by the von Szyszkowski equation (Eq. III-57) and Eq. Ill-118. They find that the elasticity increases with the size of the bubble for small bubbles but that it may go through a maximum for larger bubbles. Li and Neumann [144] have shown the effects of surface elasticity on wetting and capillary rise phenomena, with important implications for measurement of surface tension. [Pg.90]

Capillary pressure gradients and Marongoni flow induce flow in porous media comprising glass beads or sand particles [40-42], Wetting and spreading processes are an important consideration in the development of inkjet inks and paper or transparency media [43] see the article by Marmur [44] for analysis of capillary penetration in this context. [Pg.470]

Adsorbents such as some silica gels and types of carbons and zeolites have pores of the order of molecular dimensions, that is, from several up to 10-15 A in diameter. Adsorption in such pores is not readily treated as a capillary condensation phenomenon—in fact, there is typically no hysteresis loop. What happens physically is that as multilayer adsorption develops, the pore becomes filled by a meeting of the adsorbed films from opposing walls. Pores showing this type of adsorption behavior have come to be called micropores—a conventional definition is that micropore diameters are of width not exceeding 20 A (larger pores are called mesopores), see Ref. 221a. [Pg.669]

Another interesting extension of the FECO teclmique, using a capillary droplet of mercury as the second mirror, was developed by Flom etal [6f]. The light from this special interferometer is analysed in reflection. [Pg.1735]

At the present time there exist no flux relations wich a completely sound cheoretical basis, capable of describing transport in porous media over the whole range of pressures or pore sizes. All involve empiricism to a greater or less degree, or are based on a physically unrealistic representation of the structure of the porous medium. Existing models fall into two main classes in the first the medium is modeled as a network of interconnected capillaries, while in the second it is represented by an assembly of stationary obstacles dispersed in the gas on a molecular scale. The first type of model is closely related to the physical structure of the medium, but its development is hampered by the lack of a solution to the problem of transport in a capillary whose diameter is comparable to mean free path lengths in the gas mixture. The second type of model is more tenuously related to the real medium but more tractable theoretically. [Pg.3]

The second type of approach to flux modeling, the so-called "dusty gas model," is developed in Chapter 3. In view of its completely different physical basis it is remarkable that its predictions are in complete agreement with those of the capillary model. [Pg.3]

Deviation from the standard isotherm in the high-pressure region offers a means of detecting the occurrence of capillary condensation in the crevices l>etween the particles of a solid and in any mesopores present within the particles themselves. A convenient device for detecting deviations from the standard is the t-plot . In the next section the nature and uses of t-plots will be discussed, together with a,-plots, a later development from them. As will l>e shown, both of these plots may l>e used not only for the detection of capillary condensation in mesopores, but also for showing up the presence of micropores and evaluating their volume. [Pg.94]

The time is perhaps not yet ripe, however, for introducing this kind of correction into calculations of pore size distribution the analyses, whether based on classical thermodynamics or statistical mechanics are being applied to systems containing relatively small numbers of molecules where, as stressed by Everett and Haynes, the properties of matter must exhibit wide fluctuations. A fuller quantitative assessment of the situation in very fine capillaries must await the development of a thermodynamics of small systems. Meanwhile, enough is known to justify the conclusion that, at the lower end of the mesopore range, the calculated value of r is almost certain to be too low by many per cent. [Pg.154]

One of the most important advances in column construction has been the development of open tubular, or capillary columns that contain no packing material (dp = 0). Instead, the interior wall of a capillary column is coated with a thin film of the stationary phase. The absence of packing material means that the mobile phase... [Pg.562]

Another development arising from FAB has been its transformation from a static to a dynamic technique, with a continuous flow of a solution traveling from a reservoir through a capillary to the probe tip. Samples are injected either directly or through a liquid chromatography (LC) column. The technique is known as dynamic or continuous flow FAB/LSIMS and provides a convenient direct LC/MS coupling for the on-line analysis of mixtures (Figure 40.2). [Pg.288]

In both of these pieces of apparatus, isothermal operation and optimum membrane area are obtained. Good temperature control is essential not only to provide a value for T in the equations, but also because the capillary attached to a larger reservoir behaves like a thermometer, with the column height varying with temperature fluctuations. The contact area must be maximized to speed up an otherwise slow equilibration process. Various practical strategies for presetting the osmometer to an approximate n value have been developed, and these also accelerate the equilibration process. [Pg.550]

Since capillary tubing is involved in osmotic experiments, there are several points pertaining to this feature that should be noted. First, tubes that are carefully matched in diameter should be used so that no correction for surface tension effects need be considered. Next it should be appreciated that an equilibrium osmotic pressure can develop in a capillary tube with a minimum flow of solvent, and therefore the measured value of II applies to the solution as prepared. The pressure, of course, is independent of the cross-sectional area of the liquid column, but if too much solvent transfer were involved, then the effects of dilution would also have to be considered. Now let us examine the practical units that are used to express the concentration of solutions in these experiments. [Pg.550]

Fig. 1. Southern blot analysis of DNA showing (a) step 1, an agarose gel containing separated restriction fragments of DNA, denoted by (—), which is immersed in NaOH to denature the double-stranded stmcture of DNA, and then transferred by capillary flow to a nitrocellulose filter. In step 2, the bound DNA is allowed to hybridize to a labeled nucleic acid probe, and the unbound probe is washed off In step 3, the filter is placed into contact with x-ray film resulting in (b) bands of exposure on the film which are detected after development and correspond to regions where the restriction fragment is... Fig. 1. Southern blot analysis of DNA showing (a) step 1, an agarose gel containing separated restriction fragments of DNA, denoted by (—), which is immersed in NaOH to denature the double-stranded stmcture of DNA, and then transferred by capillary flow to a nitrocellulose filter. In step 2, the bound DNA is allowed to hybridize to a labeled nucleic acid probe, and the unbound probe is washed off In step 3, the filter is placed into contact with x-ray film resulting in (b) bands of exposure on the film which are detected after development and correspond to regions where the restriction fragment is...
Luminol-based chemiluminescence methods have also been employed for detection of analytes in flowing stream analytical techniques such capillary electrophoresis (282), flow injection analyses, and hplc (267). AppHcations of the enhanced luminol methodology to replace radioassay methods have been developed for a number of immunological labeling techniques (121,283). [Pg.275]


See other pages where Capillary development is mentioned: [Pg.181]    [Pg.152]    [Pg.175]    [Pg.223]    [Pg.175]    [Pg.1672]    [Pg.190]    [Pg.125]    [Pg.114]    [Pg.256]    [Pg.181]    [Pg.152]    [Pg.175]    [Pg.223]    [Pg.175]    [Pg.1672]    [Pg.190]    [Pg.125]    [Pg.114]    [Pg.256]    [Pg.362]    [Pg.559]    [Pg.1331]    [Pg.4]    [Pg.6]    [Pg.96]    [Pg.311]    [Pg.493]    [Pg.547]    [Pg.253]    [Pg.291]    [Pg.60]    [Pg.67]    [Pg.369]    [Pg.134]    [Pg.283]    [Pg.513]    [Pg.546]    [Pg.40]    [Pg.60]   


SEARCH



Capillary Cascade development

Capillary Type CMSM Developed By Haraya et al

Capillary development lead concentration

Capillary electrochromatography method development

Capillary electrophoresis fingerprint development

Capillary electrophoresis-mass development

Capillary flow multiple development

Capillary isotachophoresis recent developments

Capillary zone electrophoresis development

Glass capillary columns development

© 2024 chempedia.info