Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capacity for Activation

Culture protocols have been published which describes an accelerated differentiation process where monolayers are ready to be used after 3-7 days of culture [90-92]. One of these systems, the so-called BD BioCoat Intestinal Epithelium Differentiation Environment, is commercially available through BD Bioscience. This system is described to produce monolayers of a quality that are comparable with the typical Caco-2 cells with respect to permeability for drugs transported transcellularly. The paracellular barrier function is however low, as indicated by high mannitol permeability and low TER. The functional capacity for active uptake and efflux is not as thoroughly characterized as for the standard Caco-2 mono-layers. [Pg.101]

B. Buczek, L. Czepirski, and J. Zietkiewicz, Improvement of hydrogen storage capacity for active carbon, Adsorption, 11, 877-880 (2005). [Pg.88]

Cell/cell line Metabolic enzymes Capacity for activation/ detoxification Other remarks... [Pg.510]

At least in vitro, even this does not ensure consistent cell displacement because, in the absence of external guidance, this locomotory capacity becomes dissipated both by simultaneous extensions in divergent directions and by rapid sequential and random directional alterations (Newgreen et al., 1979). Therefore, conversion of this capacity for active locomotion into real displacement would require almost constant directional instruction, derived from extrinsic sources (as outlined in the next section). [Pg.51]

Buczek, B., and Czepirski, L., Improvement of capacity for active carbons, Adsorpt. Sci. Technol., 4(4), 217-223... [Pg.1034]

Desiccants. A soHd desiccant is simply an adsorbent which has a high affinity and capacity for adsorption of moisture so that it can be used for selective adsorption of moisture from a gas (or Hquid) stream. The main requkements for an efficient desiccant are therefore a highly polar surface and a high specific area (small pores). The most widely used desiccants (qv) are siHca gel, activated alumina, and the aluminum rich zeoHtes (4A or 13X). The equiHbrium adsorption isotherms for moisture on these materials have characteristically different shapes (Fig. 3), making them suitable for different appHcations. [Pg.254]

Production capacity was almost equally spHt between powdered and nonpowdered activated carbon products. Powdered activated carbon, a less expensive form used in Hquid-phase appHcations, is generally used once and then disposed of. In some cases, however, granular and shaped products are regenerated and reused (35). In 1990 production capacity for granular and shaped products was spHt with about two-thirds for Hquid-phase and one-third for gas-phase appHcations (37). [Pg.531]

Over the last decade production capacity in the United States remained essentially unchanged, but minor fluctuations occurred in response to changes in environmental regulations (38). A similar reaction was noted worldwide (35). The current demand for activated carbon is estimated at 93% of production capacity. The near-term growth in demand is projected to be approximately 5.5%/yr (39). [Pg.531]

The estimated production capacity of activated carbon in the United States is shown in Table 3 for seven manufacturers (41). The principal producers are Calgon Carbon (37%), American-Norit (26%), Westvaco (19%), and Atochem (10%). Several other companies purchase activated carbon for resale but do not manufacture products. [Pg.532]

Western Europe has seven manufacturers of activated carbon. The two largest, Norit and Chemviron (a subsidiary of Calgon), account for 70% of West European production capacity, and Ceca accounts for 13% (42). Japan is the third largest producer of activated carbon, having 18 manufacturers, but four companies share over 50% of the total Japanese capacity (43). Six Pacific Rim countries account for the balance of the world production capacity of activated carbon, 90% of which is in the Philippines and Sri Lanka (42). As is the case with other businesses, regional markets for activated carbon products have become international, lea ding to consoHdation of manufacturers. Calgon, Norit, Ceca, and Sutcliffe-Speakman are examples of multinational companies. [Pg.532]

Removal of color by adsorption using activated carbon is also employed. Activated carbon is very good at removing low levels of soluble chemicals, including dyes. Its main drawback is its limited capacity. Consequentiy, activated carbon is best for removing color from dilute effluent (see Carbon, ACTIVATED CARBON). [Pg.301]

An initially clean activated carbon Led at 320 K is fed a vapor of benzene in nitrogen at a total pressure of 1 MPa. The concentration of benzene in the feed is 6 mol/m. After the Led is uniformly saturated with feed, it is regenerated using benzene-free nitrogen at 400 K and 1 MPa. Solve for Loth steps. For sim-phcity, neglect fluid-phase acciimiilation terms and assume constant mean heat capacities for stationary and fluid phases and a constant velocity. The system is described by... [Pg.1524]

The adsorptive capacity of activated carbon for some common solvent vapors is shown in Table 25-27. [Pg.2187]

Adsorbents, and activated carbon in particular, are typically characterized by a highly porous structure. Adsorbents with the highest adsorption capacity for gasoline or fuel vapors have a large pore volume associated with pore diameters on the order of 50 Angstroms or less. When adsorption occurs in these pores, the process is comparable to condensation in which the pores become filled with hquid adsorbate. Fig. 5 depicts the adsorption process, including transfer of adsorbate molecules through the bulk gas phase to the surface of the solid, and diffusion onto internal surfaces of the adsorbent and into the pores. [Pg.247]

The issue of the theoretical maximum storage capacity has been the subject of much debate. Parkyns and Quinn [20] concluded that for active carbons the maximum uptake at 3.5 MPa and 298 K would be 237 V/V. This was estimated from a large number of experimental methane isotherms measured on different carbons, and the relationship of these isotherms to the micropore volume of the corresponding adsorbent. Based on Lennard-Jones parameters [21], Dignum [5] calculated the maximum methane density in a pore at 298 K to be 270 mg/ml. Thus an adsorbent with 0.50 ml of micropore per ml could potentially adsorb 135 mg methane per ml, equivalent to about 205 V/ V, while a microporc volume of 0.60 mEml might store 243 V/V. Using sophisticated parallel slit... [Pg.281]

We wUl now touch upon some of these factors. First, let s look at what we mean by system isotherm. Freundlich liquid phase isotherm studies can be used to establish the adsorptive capacity of activated carbon over a range of different concentrations. Under standard conditions, the adsorptive capacity of activated carbon increases as the concentration increases, until we reach a point of maximum saturation capacity. An example of an isotherm for phenol is shown in Figure 8. [Pg.412]

Thus curvature in an Arrhenius plot is sometimes ascribed to a nonzero value of ACp, the heat capacity of activation. As can be imagined, the experimental problem is very difficult, requiring rate constant measurements of high accuracy and precision. Figure 6-2 shows a curved Arrhenius plot for the neutral hydrolysis of methyl trifluoroacetate in aqueous dimethysulfoxide. The rate constants were measured by conductometry, their relative standard deviations being 0.014 to 0.076%. The value of ACp was estimated to be about — 200 J mol K, with an uncertainty of less than 10 J moE K. ... [Pg.251]

The notion of concurrent SnI and Sn2 reactions has been invoked to account for kinetic observations in the presence of an added nucleophile and for heat capacities of activation,but the hypothesis is not strongly supported. Interpretations of borderline reactions in terms of one mechanism rather than two have been more widely accepted. Winstein et al. have proposed a classification of mechanisms according to the covalent participation by the solvent in the transition state of the rate-determining step. If such covalent interaction occurs, the reaction is assigned to the nucleophilic (N) class if covalent interaction is absent, the reaction is in the limiting (Lim) class. At their extremes these categories become equivalent to Sn and Sn , respectively, but the dividing line between Sn and Sn does not coincide with that between N and Lim. For example, a mass-law effect, which is evidence of an intermediate and therefore of the SnI mechanism, can be observed for some isopropyl compounds, but these appear to be in the N class in aqueous media. [Pg.429]

Silica gel and activated alumina present few practical problems. They are easily reactivated after use by heating in a ventilated oven, to 130-300°C for silica gel, and 150-700°C for activated alumina. British standard specifications have been published for desiccants for packaging which regulate the contents of soluble chloride and sulphate, dust content and absorptive capacity. [Pg.770]


See other pages where Capacity for Activation is mentioned: [Pg.176]    [Pg.97]    [Pg.408]    [Pg.50]    [Pg.191]    [Pg.233]    [Pg.232]    [Pg.1227]    [Pg.176]    [Pg.97]    [Pg.408]    [Pg.50]    [Pg.191]    [Pg.233]    [Pg.232]    [Pg.1227]    [Pg.88]    [Pg.201]    [Pg.370]    [Pg.43]    [Pg.531]    [Pg.193]    [Pg.161]    [Pg.505]    [Pg.515]    [Pg.381]    [Pg.2186]    [Pg.92]    [Pg.98]    [Pg.294]    [Pg.138]    [Pg.280]    [Pg.289]    [Pg.293]    [Pg.405]    [Pg.364]    [Pg.412]    [Pg.33]   


SEARCH



© 2024 chempedia.info