Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capacitance pseudocapacitance

To increase the capacitance of ESs, some electrochemically active materials are explored for electrode use to provide much higher pseudocapacitance than double-layer capacitance. Pseudocapacitive charge storage fundamentally differs from the electrostatic mechanism that governs double-layer capacitance. For pseudocapacitance, a faradic charge transfer in the electrode porous layer occurs through a thermodynamically and kinetically favored electrochemical reduction-oxidation (redox) reaction [1]. [Pg.99]

The capacitance is a readily measured interfacial property and it gives qualitative information on the adsorption of species at the electrode surface. Since the surface charge density, q, is a function of the potential and of coverage, the measured capacitance may be expressed as the sum of a true (high frequency) capacitance and an adsorption pseudocapacitance, i.e. q f(E,6) and hence... [Pg.167]

Due to their moderate specific surface area, carbon nanotubes alone demonstrate small capacitance values. However, the presence of heteroatoms can be a source of pseudocapacitance effects. It has been already proven that oxygenated functional groups can significantly enhance the capacitance values through redox reactions [11]. Lately, it was discovered that nitrogen, which is present in carbon affects also the capacitance properties [12]. [Pg.31]

The N-doped carbons with a nanotube backbone combine a moderate presence of micropores with the extraordinary effect of nitrogen that gives pseudocapacitance phenomena. The capacitance of the PAN/CNts composite (ca. 100 F/g) definitively exceeds the capacitance of the single components (5-20 F/g). The nitrogen functionalities, with electron donor properties, incorporated into the graphene rings have a great importance in the exceptional capacitance behavior. [Pg.42]

Recently supercapacitors are attracting much attention as new power sources complementary to secondary batteries. The term supercapacitors is used for both electrochemical double-layer capacitors (EDLCs) and pseudocapacitors. The EDLCs are based on the double-layer capacitance at carbon electrodes of high specific areas, while the pseudocapacitors are based on the pseudocapacitance of the films of redox oxides (Ru02, Ir02, etc.) or redox polymers (polypyrrole, polythiophene, etc.). [Pg.316]

In Figure 4 the effect of prothrombin on the differential capacity of a PS monolayer is presented. The overall capacitance, which is proportional to the out-of-phase (quadrature) ac current, increases upon interaction with the prothrombin. Moreover, a pseudocapacitance peak (at —0.7 V relative to the N-AgCl electrode) characteristic of cystine-cysteine redox potential appears. The peak potential moves as expected toward more... [Pg.123]

As shown in Fig. 14, the cathode potential changes abruptly across the H2/air-front. This fact warrants the inclusion of the pseudocapacitance into the previous steady-state kinetic model.12 It is clear that the electrode s pseudo-capacitance can supply protons in transient events and thereby reduce the cathode carbon-support corrosion rate in the case of fast moving H2/air- ronts. Figure 18... [Pg.76]

A persistent question regarding carbon capacitance is related to the relative contributions of Faradaic ( pseudocapacitance ) and non-Faradaic (i.e., double-layer) processes [85,87,95,187], A practical issue that may help resolve the uncertainties regarding DL- and pseudo-capacitance is the relationship between the PZC (or the point of zero potential) [150] and the point of zero charge (or isoelectric point) of carbons [4], The former corresponds to the electrode potential at which the surface charge density is zero. The latter is the pH value for which the zeta potential (or electrophoretic mobility) and the net surface charge is zero. At a more fundamental level (see Figure 5.6), the discussion here focuses on the coupling of an externally imposed double layer (an electrically polarized interface) and a double layer formed spontaneously by preferential adsorp-tion/desorption of ions (an electrically relaxed interface). This issue has been discussed extensively (and authoritatively ) by Lyklema and coworkers [188-191] for amphifunctionally electrified... [Pg.182]

This chapter intends to discuss the fundamental role played by carbons, taking particularly into account their nanotexture and surface functionality. The general properties of supercapacitors are reviewed, and the correlation between the double-layer capacitance and the nanoporous texture of carbons is shown. The contribution of pseudocapacitance through pseudofaradaic charge transfer reactions is introduced and developed for carbons with heteroatoms involved in functionalities able to participate to redox couples, e.g., the quinone/hydroquinone pair. Especially, we present carbons obtained by direct carbonization (without any further activation) of appropriate polymeric precursors containing a high amount of heteroatoms. [Pg.330]


See other pages where Capacitance pseudocapacitance is mentioned: [Pg.301]    [Pg.127]    [Pg.116]    [Pg.278]    [Pg.301]    [Pg.127]    [Pg.116]    [Pg.278]    [Pg.215]    [Pg.174]    [Pg.28]    [Pg.41]    [Pg.70]    [Pg.87]    [Pg.95]    [Pg.80]    [Pg.215]    [Pg.184]    [Pg.248]    [Pg.563]    [Pg.569]    [Pg.570]    [Pg.117]    [Pg.126]    [Pg.79]    [Pg.183]    [Pg.186]    [Pg.187]    [Pg.188]    [Pg.189]    [Pg.190]    [Pg.193]    [Pg.353]    [Pg.358]    [Pg.370]    [Pg.370]    [Pg.431]    [Pg.428]    [Pg.7]    [Pg.20]    [Pg.49]    [Pg.66]    [Pg.74]    [Pg.452]   
See also in sourсe #XX -- [ Pg.50 , Pg.129 , Pg.148 , Pg.151 ]




SEARCH



Pseudocapacitance

Pseudocapacitances

© 2024 chempedia.info