Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium materials

Portland cement is classified as a hydrauHc cement, ie, it sets or cures in the presence of water. The term Portland comes from its inventor, Joseph Aspdin, who in 1824 obtained a patent for the combination of materials referred to today as Portland cement. He named it after a grayish colored, natural limestone quarried on the Isle of Portland, which his cured mixture resembled. Other types of hydrauHc cements based on calcium materials were known for many centuries before this, going back to Roman times. Portland cement is not an exact composition but rather a range of compositions, which obtain the desired final properties. The compounds that make up Portland cements are calcium siHcates, calcium aluminates, and calcium aluminoferrites (see ). [Pg.322]

Rai, D., Eary, L. E., Mattigod, S. B., Ainsworth, C. C. Zachara, J. M. 19876. Leaching behavior of fossil fuel wastes Mineralogy and geochemistry of calcium. Materials Research Society Symposium Proceedings, 86, 3-15. [Pg.657]

Pu (86 years) is formed from Np. Pu is separated by selective oxidation and solvent extraction. The metal is formed by reduction of PuF with calcium there are six crystal forms. Pu is used in nuclear weapons and reactors Pu is used as a nuclear power source (e.g. in space exploration). The ionizing radiation of plutonium can be a health hazard if the material is inhaled. [Pg.318]

There are, however, technological means available to burn incompletely desulfurized fuels at the same time minimizing SO2 emissions. In the auto-desulfurizing AUDE boiler developed by IFF, the effluent is treated in place by an absorbent based on lime and limestone calcium sulfate is obtained. This system enables a gas desulfurization of 80% it requires nevertheless a relatively large amount of solid material, on the order of 200 kg per ton of fuel. [Pg.256]

Calcium plays an important part in structure-building in living organisms, perhaps mainly because of its ability to link together phosphate-containing materials. Calcium ions in the cell play a vital part in muscle contraction. [Pg.124]

As a starting material for other deuterocompounds. For example deuterium oxide, on magnesium nitride, gives deutero-ammonia, NDj with calcium dicarbide, deuteroethyne, C2D2, is obtained. [Pg.277]

Reaction (13.4) is exothermic and reversible, and begins at about 700 K by Le Chatelier s Principle, more iron is produced higher up the furnace (cooler) than below (hotter). In the hotter region (around 900 K), reaction (13.5) occurs irreversibly, and the iron(II) oxide formed is reduced by the coke [reaction (13.6)] further down. The limestone forms calcium oxide which fuses with earthy material in the ore to give a slag of calcium silicate this floats on the molten iron (which falls to the bottom of the furnace) and can bo run off at intervals. The iron is run off and solidified as pigs —boat-shaped pieces about 40 cm long. [Pg.391]

If a compound has been recrystallised from petrol, benzene, etc.y some freshly cut shavings of clean paraffin wax should be added to the calcium chloride in (A) or to the sodium hydroxide in D, The surface of the wax absorbs organic solvent vapours (particularly the hydrocarbons) and the last trace of such solvents is thus readily removed from the recrystallised material. [Pg.20]

Absorbent cotton (cotton wool). This material is an excellent drying agent for use in the so-called calcium chloride tubes, i.e., drying tubes, placed at the top of dropping funnels, reflux condensers, etc., to exclude moisture. It is more convenient than calcium chloride, and should preferably be dried in an oven at 100° before use. [Pg.143]

Reflux a mixture of 68 g. of anhydrous zinc chloride (e.g., sticks), 40 ml. (47 -5 g.) of concentrated hydrochloric acid and 18-5 g. (23 ml.) of sec.-butyl alcohol (b.p. 99-100°) in the apparatus of Fig. 777, 25, 1 for 2 hours. Distil oflF the crude chloride untU the temperature rises to 100°. Separate the upper layer of the distillate, wash it successively with water, 5 per cent, sodium hydroxide solution and water dry with anhydrous calcium chloride. Distil through a short column or from a Claisen flask with fractionating side arm, and collect the fraction of b.p. 67-70° some high boiling point material remains in the flask. Redistil and collect the pure cc. butyl chloride at 67-69°. The yield is 15 g. [Pg.273]

Separate the ketone layer from the water, and redistil the lattCT rmtil about one third of the material has passed over. Remove the ketone after salting out any dissolved ketone with potassium carbonate (5). Wash the combined ketone fractions four times with one third the volume of 35-40 per cent, calcium chloride solution in order to remove the alcohol. Dry over 15 g. of anhydrous calcium chloride it is best to shake in a separatory funnel with 1-2 g. of the anhydrous calcium chloride, remove the saturated solution of calcium chloride as formed, and then allow to stand over 10 g. of calcium chloride in a dry flask. Filter and distil. Collect the methyl n-butyl ketone at 126-128°. The yield is 71 g. [Pg.482]

Another difficulty in this reaction lies in the preparation of pure chloroacetaldehyde. The low yield observed is due to simultaneous formation of by-products (polyhalogenation). So vinylchloride was used as a starting material for this synthesis (449). A simpler method is to react chlorine with vinylchloride in aqueous solution and then to dehydrate the semihydrated chloroacetaldehyde by distillation through a column of calcium chloride heated to 70 to 90 C (451). [Pg.171]

Acetylene was discovered m 1836 by Edmund Davy and characterized by the French chemist P E M Berthelot m 1862 It did not command much attention until its large scale preparation from calcium carbide m the last decade of the nineteenth century stim ulated interest m industrial applications In the first stage of that synthesis limestone and coke a material rich m elemental carbon obtained from coal are heated m an electric furnace to form calcium carbide... [Pg.363]

To prepare the standard pH buffer solutions recommended by the National Bureau of Standards (U.S.), the indicated weights of the pure materials in Table 8.15 should be dissolved in water of specific conductivity not greater than 5 micromhos. The tartrate, phthalate, and phosphates can be dried for 2 h at 100°C before use. Potassium tetroxalate and calcium hydroxide need not be dried. Fresh-looking crystals of borax should be used. Before use, excess solid potassium hydrogen tartrate and calcium hydroxide must be removed. Buffer solutions pH 6 or above should be stored in plastic containers and should be protected from carbon doxide with soda-lime traps. The solutions should be replaced within 2 to 3 weeks, or sooner if formation of mold is noticed. A crystal of thymol may be added as a preservative. [Pg.933]

Historically, the use of acetylene as raw material for chemical synthesis has depended strongly upon the avadabihty of alternative raw materials. The United States, which until recendy appeared to have limitless stocks of hydrocarbon feeds, has never depended upon acetylene to the same extent as Germany, which had more limited access to hydrocarbons (1). During Wodd War 1 the first manufacture of a synthetic mbber was undertaken ia Germany to replace imported natural mbber, which was no longer accessible. Acetylene derived from calcium carbide was used for preparation of... [Pg.101]


See other pages where Calcium materials is mentioned: [Pg.413]    [Pg.250]    [Pg.273]    [Pg.539]    [Pg.413]    [Pg.250]    [Pg.273]    [Pg.539]    [Pg.50]    [Pg.76]    [Pg.77]    [Pg.128]    [Pg.164]    [Pg.190]    [Pg.243]    [Pg.380]    [Pg.395]    [Pg.284]    [Pg.273]    [Pg.392]    [Pg.104]    [Pg.273]    [Pg.422]    [Pg.141]    [Pg.291]    [Pg.416]    [Pg.514]    [Pg.631]    [Pg.644]    [Pg.679]    [Pg.827]    [Pg.887]    [Pg.1006]    [Pg.1011]    [Pg.95]    [Pg.186]    [Pg.195]    [Pg.342]    [Pg.234]   


SEARCH



© 2024 chempedia.info