Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcite, analysis

We say then that a crystal is satisfactory for purposes of chemical analysis if the beam it reflects is monochromatic within the limits established by the collimating system. As theory shows,15 some broadening is to be expected on Bragg reflection even from perfect crystals, but this broadening is so small (not over 0.001°) that we need not consider it. Relatively few crystals, notably some diamonds and calcites, approach perfection. Sodium chloride, more useful in x-ray spectrog-raphy, broadens monochromatic x-rays appreciably, but the. total broadening can be smaller than 0.30°,16 the collimator a perture. See Figure 4-9. [Pg.115]

These methods may prove useful in the qualitative analysis of organic compounds, once the selectivities of the precipitants are understood. The metallic oxides suffer from the disadvantage of producing a precipitate which is difficult to filter, while calcite and zirconium phosphates produce relatively well-mannered precipitates. Even when the efficiencies of collection of various model compounds in seawater is known, the immense variety of organic compounds in seawater will keep this technique largely qualitative. [Pg.368]

The origin of lead present in individual calcite particles could be ascribed by the LAMMA (laser microprobe mass analysis) technique. At low laser irradiances, the desorption mode, information is gathered on metallic species adsorbed on the surface of the particle. At high irradiances the particle is evaporated, revealing the components that coprecipitated with calcite111. [Pg.441]

To set the initial composition of the Lyons fluid, we use an analysis of modem Lyons groundwater sampled at 51 °C (McConaghy el al., 1964), which we correct to the temperature of the simulation by heating it in the presence of calcite and quartz. In react, the commands... [Pg.380]

With time, however, the company encountered problems, including caving of the formation into the wellbore and the loss of permeability in zones that had accepted fluid. In June 1987, a number of sidewall cores were taken from the formation (Mehnert et al., 1990). Mineralogic analysis by x-ray diffraction showed that significant amounts of calcite (CaCCb) and brucite [Mg(OH)2], as well as some amorphous matter, had formed from the original dolomite. In some samples, the dolomite was completely consumed and the rock was found to be composed entirely of a mixture of brucite and calcite. [Pg.428]

Secondary mineralization at Mount Keith produces hydromagnesite, while mineralization at Diavik includes carbonates of Mg, Ca and Na nesquehonite, calcite, vaterite, natrite, thermonatrite, natron, trona, gaylussite and northupite. The rate of carbon mineralization at the two mine sites was assessed using quantitative powder X-ray diffraction analysis and the Rietveld... [Pg.143]

ABSTRACT The aim of this study was to test portable infrared spectroscopy for non-destructive analysis of ancient construction mortar. Mortar samples from the House of the Vestals, in Pompeii, Italy, were initially examined with traditional analytical techniques, including X-ray fluorescence, X-ray diffraction and thin section analysis. These techniques were used to establish mineralogical and chemical profiles of the samples and to verify the results of experimental field methods. Results showed the lime-based binder was composed of calcite, and the volcanic sand aggregate contained clinopyroxene, plagioclase, sanidine and olivine crystals. [Pg.303]

The Atomic emission spectrometry (ICP-AES) results on the solids confirm the chemical purity of Py, Cp, Qz, Cal and Dol samples. The Po sample contains calcium which, after conversion into calcite, gives approximately 10wt% of this mineral. Sid sample contains 10.3 wt% Mn and 1.86 wt% Mg, in agreement with measurements using a Scanning Electron Microscopy coupled to Energy Dispersive X-Ray Spectroscopy (SEM-EDS) analysis again this explains the difference between the measured and theoretical density of the Sid powder. [Pg.328]

Once the pure mineral powders characterized, 3 mixtures were manually prepared and named ML1, ML2 and ML3. They contain each of the 8 minerals in different proportions reproducing 3 mine tailings falling in the uncertainty zone of the static test used. The 3 synthetic tailings were characterized with the same techniques as for the pure minerals. Cp and Sp weight fractions were evaluated from their chemical element tracers (respectively Cu and Zn) obtained from ICP-AES analysis. Qz, Dol, and Sid samples are considered pure and their percentages in the mixtures are not corrected. Table 1 presents the fraction of each mineral in the three mixtures before and after correction taking into consideration the contamination of Po sample by pyrite and calcite, as previously determined. The corrected mineral proportions are used for calculation of the static test parameters based on... [Pg.328]

Trace elements and rare-earth elements (REEs) of the same calcite samples used for the stable isotope analysis have significantly lower concentration of REE as well as most trace elements relative to typical carbonatites. The total REE contents of the Ulsan carbonates range from 3 to 17 ppm, which are much lower than any igneous rocks and even lower than those of some sedimentary rocks. REE and trace-element abundances may have changed sufficiently due to alteration, thus, affecting petrogenetic... [Pg.495]

A sample of metamorphic carbonate contains calcite CaC03, dolomite Cao.5Mgo.5CO3, and diopside CaMgSi206. A chemical analysis on the calcinated (C02-free) rock indicates the following molar proportions 0.525 (0.03) CaO, 0.225 (0.01) MgO, and 0.25 (0.02) Si02 with standard deviations given in parentheses. Find the molar proportions of each mineral in the rock and their standard deviation. [Pg.220]

Figure 4.12 Principal component analysis of the major elements in Coumiac limestones. 91 percent of the variance is explained by the first two components. The data can be explained by the combination of three chemical end-members calcitic (CaO and C02), detrital (Si02 and A1203), and organic (organic C and Fe203). Because of the closure condition these three end-members translate into only two significant components. Figure 4.12 Principal component analysis of the major elements in Coumiac limestones. 91 percent of the variance is explained by the first two components. The data can be explained by the combination of three chemical end-members calcitic (CaO and C02), detrital (Si02 and A1203), and organic (organic C and Fe203). Because of the closure condition these three end-members translate into only two significant components.
The simultaneously recorded heating X-ray pattern of calcite in vacuum, the TMBA-curve and the mass spectrometric curve for C02 are shown in Fig. 60 and in Fig. 61. It can be seen that the decomposition of calcite in vacuum (10-4 torr) starts already at 420 °C and that it is complete at 660 °C. The equipment and experimental procedure for thermomolecular beam analysis has been discussed in detail in Section 2.4. [Pg.131]

In addition to providing the means for calculating the isotopic compositions of ancient fluids based on analysis of minerals, mineral-fluid isotope fractionation factors provide an opportunity to combine fractionation factors when there is a common substance such as water. A fundamental strategy for compiling databases for isotopic fractionation factors is to reference such factors to a common substance (e.g., Friedman and O Neil 1977). For example, the quartz-water fractionation factor may be combined with the calcite-water fractionation factor to obtain the quartz-calcite fractionation factor at some temperature. It is now recognized, however, that the isotopic activity ratio of water in a number of experimental determinations of mineral-fluid fractionation factors has been variable, in part due to dissolution of... [Pg.16]

Palmer AN (1996) Rates of limestone dissolution and calcite precipitation in cave streams of east-central New York state, northern section. Geol Soc Am 28 89 Parker BL, Cherry JA, Chapman SW, Guilbeault MA (2003) Review and analysis of chlorinated solvent dense nonaqueous phase liquid distribution in five sandy aquifers. Vadose Zone J 2 116-137... [Pg.399]

Fig. 2. SEM backscattered electron image of a Type II vein containing euhedral to cataclastically brecciated arsenopyrite (asp), pyrite (py), quartz, and calcite. A thin Type 1 quartz vein showed a SEM-EDAX analysis of a very fine-grained mineral mass rich in Hg-Au-As vein (arrow). Fig. 2. SEM backscattered electron image of a Type II vein containing euhedral to cataclastically brecciated arsenopyrite (asp), pyrite (py), quartz, and calcite. A thin Type 1 quartz vein showed a SEM-EDAX analysis of a very fine-grained mineral mass rich in Hg-Au-As vein (arrow).
The phyllic alteration zone coincides with a subtle but consistent shift in the dominant AlOH peak in the short-wave infrared spectrum ( 2210 nm) to slightly lower wavelengths, consistent with an inner white mica-ferroan carbonate mineral assemblage. A preliminary analysis of hyperspectral data over the visible to near infrared range suggests that ferroan carbonates may be detected but not reliably quantified. However, TIR data allow calcite and ferroan carbonate to be distinguished, and may also detect increasing Fe content in ferroan dolomite as mineralized structures are approached. [Pg.275]

The isotope composition of biogenic and authigenic mineral precipitates from lake sediments can be used to infer changes in either temperature or the isotope composition of lake water. Knowledge of the factors that may have influenced the isotope composition of the lake water is essential for the interpretation of the precipitated phases (Leng and Marshall 2004). In many lakes the combined analysis of different types of authigenic components (precipitated calcite, ostracodes, bivalves, diatoms, etc.) may offer the possibility of obtaining seasonally specific information. [Pg.210]


See other pages where Calcite, analysis is mentioned: [Pg.143]    [Pg.143]    [Pg.366]    [Pg.71]    [Pg.152]    [Pg.431]    [Pg.408]    [Pg.413]    [Pg.429]    [Pg.429]    [Pg.447]    [Pg.447]    [Pg.455]    [Pg.321]    [Pg.646]    [Pg.434]    [Pg.475]    [Pg.476]    [Pg.247]    [Pg.303]    [Pg.127]    [Pg.177]    [Pg.224]    [Pg.574]    [Pg.585]    [Pg.5]    [Pg.344]    [Pg.377]    [Pg.425]    [Pg.128]    [Pg.32]    [Pg.55]   
See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Calcite

Calcite, analysis mixture

Calcium carbonate, analysis calcite

© 2024 chempedia.info