Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

C Friedel-Crafts alkylation

C. Friedel-Crafts Alkylation with Alkenes and Alcohols... [Pg.1087]

We will show here the classification procedure with a specific dataset [28]. A reaction center, the addition of a C-H bond to a C=C double bond, was chosen that comprised a variety of different reaction types such as Michael additions, Friedel-Crafts alkylation of aromatic compounds by alkenes, or photochemical reactions. We wanted to see whether these different reaction types can be discerned by this... [Pg.193]

Catalysts used in the polymerization of C-5 diolefins and olefins, and monovinyl aromatic monomers, foUow closely with the systems used in the synthesis of aHphatic resins. Typical catalyst systems are AlCl, AIBr., AlCl —HCl—o-xylene complexes and sludges obtained from the Friedel-Crafts alkylation of benzene. Boron trifluoride and its complexes, as weU as TiCl and SnCl, have been found to result in lower yields and higher oligomer content in C-5 and aromatic modified C-5 polymerizations. [Pg.354]

Friedel-Crafts alkylation of 8-hydroxycarbostyrils, such as leads to substitution at the C-5 position, namely, In this case an a-haloacyl reagent is employed. Displacement with isopropylamine and careful sodium borohydride reduction (care is... [Pg.184]

Mohanty et al. were the first to introduce pendent r-butyl groups in die polymer backbones. The resulting material was quite soluble in aprotic dipolar solvents.83 The PEEK precursors were prepared under a mild reaction condition at 170°C. The polymer precursor can be converted to PEEK in die presence of Lewis acid catalyst A1C13 via a retro Friedel-Crafts alkylation. Approximately 50% of die rerr-butyl substitutes were removed due to die insolubility of the product in die solvent used. Later, Risse et al. showed diat complete cleavage of f< rf-butyl substitutes could be achieved using a strong Lewis acid CF3SO3H as both die catalyst and the reaction medium (Scheme 6.15).84... [Pg.342]

The mechanism for the production of 9-((chlorosilyl)alkyl)(luorenes from the Friedel-Crafts alkylation reaction of biphenyl with (l,2-dichloroethyl)silane in the presence of aluminum chloride as catalyst is outlined in Scheme 4. At the beginning stage of the reaction, one of two C—Cl bondsof (1,2-dichloroethyl)silane (CICH2—CICH—SiXi) interacts with aluminum chloride catalyst to give intermediate 1 (a polar +C-CI - ( +C-C1—Al CI3) or a carbocation C AICU ... [Pg.176]

Among the Friedel-Crafts alkylations of aromatic compounds with (chlorinated alkyl)silanes, the alkylation of benzene with (tt>-chloroalkyl)silanes in the presence of aluminum chloride catalyst was generally affected by two factors the spacer length between the Cl and silicon and the electronic nature of substituents on the silicon atom of (w-chloroalkyl)silanes. As the spacer length between the C—Cl and silicon increases from (chloromethyl)silane to (/i-chloroethyl)silane to (/-chloropropyl)silane, the reactivity of the silanes increases. As the number of chloro-groups on the silicon decreases from (chloromethyl)trichlorosilanes to (chloromethyl)methyldichlorosilanes to (chloromethyl)trimethylsilanes, the... [Pg.177]

Furthermore, Jana et al. developed a FeCl3-catalyzed C3-selective Friedel-Crafts alkylation of indoles, using allylic, benzylic, and propargylic alcohols in nitromethane as solvent at room temperature. This method can also be used for the alkylation of pyrrole (Scheme 4). The reactions were complete within 2-3 h without the need of an inert gas atmosphere leading to the C-3-substitution product exclusively in moderate to good yields [20]. [Pg.5]

Near-critical water has been used as a medium for various C-C bond formation reactions including Friedel-Crafts alkylation and acylation (Eq. 7.12).30 In these reactions, near-critical water solubilizes the organics and acts as a source of both hydronium and hydroxide ions, thereby replacing the normally required hazardous solvents and catalysts that require subsequent neutralization and disposal. [Pg.206]

Reaction type (d) also complicates the Friedel-Crafts alkylation of benzene (a type c/b reaction, p. 141) by 1-bromopropane, MeCH2-CH2Br, in the presence of gallium bromide, GaBr3, as Lewis acid... [Pg.108]

Friedel-Crafts alkylation of benzene or toluene by allyl chloride in presence of ethylaluminium chlorides is vigorous even at — 70°C, and explosions have occurred. See Lewis acids, etc., next below... [Pg.419]

Other electrophilic substitution reactions on aromatic and heteroaromatic systems are summarized in Scheme 6.143. Friedel-Crafts alkylation of N,N-dimethyl-aniline with squaric acid dichloride was accomplished by heating the two components in dichloromethane at 120 °C in the absence of a Lewis acid catalyst to provide a 23% yield of the 2-aryl-l-chlorocydobut-l-ene-3,4-dione product (Scheme 6.143 a) [281]. Hydrolysis of the monochloride provided a 2-aryl-l-hydroxycyclobut-l-ene-3,4-dione, an inhibitor of protein tyrosine phosphatases [281], Formylation of 4-chloro-3-nitrophenol with hexamethylenetetramine and trifluoroacetic acid (TFA) at 115 °C for 5 h furnished the corresponding benzaldehyde in 43% yield, which was further manipulated into a benzofuran derivative (Scheme 6.143b) [282]. 4-Chloro-5-bromo-pyrazolopyrimidine is an important intermediate in the synthesis of pyrazolopyrimi-dine derivatives showing activity against multiple kinase subfamilies (see also Scheme 6.20) and can be rapidly prepared from 4-chloropyrazolopyrimidine and N-bromosuccinimide (NBS) by microwave irradiation in acetonitrile (Scheme... [Pg.201]

In chemistry, the term complex can mean many things. The belief, which I shared, that complexes of the metal halides with monomers or with alkyl halides are important in CP induced me to undertake several difficult but fruitful investigations. Complexes between RX and MtXn were well known [see References in [24]] and they were being studied at about that time by several workers, such as H. C. Brown at Purdue University with regard to the A1 halides and Fairbrother at Manchester University was concerned with similar systems and with the ionisation of trityl halides by metal halides. I was concerned with TiCl4, my then favourite catalyst , and its interaction with the alkyl chlorides which were used as solvents for CP. The theory first suggested by Pepper [46] and adopted by us was that if a CP was initiated in an alkyl chloride RC1, and there was no evident effect of water, then the initiation was most likely akin to a Friedel-Crafts alkylation. This was represented by the equations (7) and (8) ... [Pg.30]

The reaction looks like a simple Friedel-Crafts alkylation, but there is a twist — the leaving group is not on the C which becomes attached to the ring. After formation of the C7 carbocation, a 1,2-hydride shift occurs to give a C6 carbocation. The 1,2-hydride shift is energetically uphill, but the 2° carbocation is then trapped rapidly by the arene to give a 6-6 ring system. [Pg.70]

Apart from the possibility of rearrangement, the main drawback in the preparative use of this Friedel-Crafts reaction is polyalkylation (c/. p. 153). The presence of an electron-withdrawing substituent is generally sufficient to inhibit Friedel-Crafts alkylation thus nitrobenzene is often used as a solvent for the reaction because AICI3 dissolves readily in it, thus avoiding a heterogeneous reaction. [Pg.143]

Friedel-Crafts Alkylations and Mukaiyama-Michael Reactions The metal-catalyzed addition of aromatic substrates to electron-deficient a- and 7i-systems, commonly known as Friedel-Crafts alkylation, has long been established as a powerful strategy for C-C bond formation. Surprisingly, however, relatively... [Pg.322]

In 2004, Terada and coworkers reported the first asymmetric phosphoric acid-catalyzed Friedel-Crafts alkylation (Scheme 8). Aldimines 11 reacted with commercially available 2-methoxy furan (20) in the presence of BINOL phosphate (/ )-3q (2 mol%, R = S.S-MeSj-C Hj) to provide access to A-Boc-protected 2-furyl amines 21 in high yields (80-96%) and enantioselectivities (86-97% ee) [19]. [Pg.404]

More recently, a catalyst-free aqueous version of this strategy was proposed with simple acyclic 1,3-dicarbonyls, formaldehyde, and styrene or anilines derivatives (Scheme 40) [131], In the first case (Scheme 40), the very reactive 2-methylene-1,3-dicarbonyl intermediate reacts smoothly at 80°C with a variety of substituted styrenes to give the corresponding dihydropyrans in moderate to good yields. Remarkably, when styrenes were replaced by A-ethylaniline, a novel five-component reaction involving twofold excess of both formaldehyde and 1,3-dicarbonyl selectively occurred (Scheme 41). The result is the formation of complex fused pyranoquinolines following a Friedel-Craft alkylation - dehydration sequence to furnish the quinoline nucleus, which suffers the Hetero-Diels-Alder cyclization in synthetically useful yields. [Pg.252]

Cumene is an important intermediate in the manufacture of phenol and acetone. The feed materials are benzene and propylene. This is a Friedel-Crafts alkylation reaction catalyzed by solid phosphoric acid at 175-225 °C and 400-600 psi. The yield is 97% based on benzene and 92% on propylene. Excess benzene stops the reaction at the monoalkylated stage and prevents the polymerization of propylene. The benzene propylene ratio is 8-10 1. [Pg.171]

First developments in the Friedel-Crafts alkylation were concentrated on the use of stoichiometric amounts of Lewis acids, such as A1C13, BF3 or TiCl4, to produce stoichiometric amounts of salt by-products [5-9]. However, in recent years more and more catalytic methods have been developed. In particular, rare earth metal triflates, including Sc(OTf)3, La(OTf)3 and Yb(OTf)3, have been extensively used as Lewis acid catalysts in various C-C and C-X bond forming reactions [10-13], Despite the benefit of their versatility for organic synthesis, these Lewis acids possess major drawbacks. They are expensive, rather toxic [14], and air- and moisture-sensitive. [Pg.116]

Problem 11.14 PhNO, but not C H. is used as a solvent for the Friedel-Crafts alkylation of PhBr. Explain. [Pg.221]

Friedel-Crafts alkylations and acylations, followed by reduction of the C=0 group, are most frequently used to synthesize arenes. Coupling reactions can also be employed. [Pg.229]

Problem 11.33 Explain the following observations about the Friedel-Crafts alkylation reaction, (a) In monoalkylating C H with RX in AIX, an excess of C H is used, (b) The alkylation of PhOH and PhNH, gives poor yields, (c) Ph—Ph cannot be prepared by the reaction... [Pg.229]


See other pages where C Friedel-Crafts alkylation is mentioned: [Pg.518]    [Pg.620]    [Pg.150]    [Pg.299]    [Pg.963]    [Pg.442]    [Pg.1130]    [Pg.518]    [Pg.620]    [Pg.150]    [Pg.299]    [Pg.963]    [Pg.442]    [Pg.1130]    [Pg.322]    [Pg.556]    [Pg.712]    [Pg.1017]    [Pg.705]    [Pg.54]    [Pg.55]    [Pg.56]    [Pg.145]    [Pg.159]    [Pg.462]    [Pg.118]    [Pg.231]    [Pg.261]    [Pg.165]    [Pg.166]    [Pg.532]    [Pg.94]   
See also in sourсe #XX -- [ Pg.235 ]

See also in sourсe #XX -- [ Pg.224 , Pg.225 ]




SEARCH



C-Alkyl

C-Alkylation

Friedel Crafts alkylation

Friedel-Crafts alkylations

© 2024 chempedia.info