Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butyl polymerization

Tetrazolin-5-one, l-arylsulfonyl-4-butyl-polymerization, 5, 838 Tetrazolin-5-one, 1-methyl-methylation, 5, 819 Tetrazolin-5-ones 1,4-disubs tituted synthesis, 5, 831 1-substituted alkylation, 5, 794 tautomerism, 5, 794 Tetrazolinyl radicals, 5, 801 1,2,3,4-Tetrazolium-5-aminide nomenclature, 1, 35... [Pg.856]

The first amino resins used in coatings were partially butylated, polymeric urea-formaldehyde (UF) resins introduced in the late 1920s. Melamine-formaldehyde (MF) resins followed in 1935. In 1960 a range of fully alkylated, predominantly... [Pg.80]

The polymer slurry circulates through the reactor tubes, and boiling liquid ethylene in the reactor jackets keeps the reactor contents cold. The butyl polymerization process is complex because of the combination of low temperature operation, polymer slurry formation, and difficulty in directly measuring polymer quality. To achieve high molecular weight, the reaction temperature must be kept low to reduce the amount of chain transfer. In the slurry process, the viscosity... [Pg.907]

The halogenation process begins with the preparation of a hexane soln-tion of butyl rubber with the desired molecular weight and unsaturation. Slnrry from a butyl polymerization reactor is dissolved (69-71) by transferring it into a drum containing hot liqnid hexane that rapidly dissolves the fine slnrry particles. [Pg.908]

The polymeric products can be made to vary widely in physical properties through controlled variation in the ratios of monomers employed in thek preparation, cross-linking, and control of molecular weight. They share common quaHties of high resistance to chemical and environmental attack, excellent clarity, and attractive strength properties (see Acrylic ester polymers). In addition to acryHc acid itself, methyl, ethyl, butyl, isobutyl, and 2-ethylhexyl acrylates are manufactured on a large scale and are available in better than 98—99% purity (4). They usually contain 10—200 ppm of hydroquinone monomethyl ether as polymerization inhibitor. [Pg.148]

Emulsion Polymerization. Emulsion polymerization is the most important industrial method for the preparation of acryhc polymers. The principal markets for aqueous dispersion polymers made by emulsion polymerization of acryhc esters are the paint, paper, adhesives, textile, floor pohsh, and leather industries, where they are used principally as coatings or binders. Copolymers of either ethyl acrylate or butyl acrylate with methyl methacrylate are most common. [Pg.168]

Butyl mbber, a copolymer of isobutjiene with 0.5—2.5% isoprene to make vulcanization possible, is the most important commercial polymer made by cationic polymerization (see Elastomers, synthetic-butyl rubber). The polymerization is initiated by water in conjunction with AlCl and carried out at low temperature (—90 to —100° C) to prevent chain transfer that limits the molecular weight (1). Another important commercial appHcation of cationic polymerization is the manufacture of polybutenes, low molecular weight copolymers of isobutylene and a smaller amount of other butenes (1) used in adhesives, sealants, lubricants, viscosity improvers, etc. [Pg.244]

With the avadabihty of polymerization catalysts, extensive efforts were devoted to developing economical processes for manufacture of isoprene. Several synthetic routes have been commercialized. With natural mbber as an alternative, the ultimate value of the polymer was more or less dictated by that market. The first commercial use of isoprene in the United States started in 1940. It was used as a minor comonomer with isobutylene for the preparation of butyl mbber. Polyisoprene was commercialized extensively in the 1960s (6). In the 1990s isoprene is used almost exclusively as a monomer for polymerization (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE). [Pg.462]

PTMEG is a polymeric ether susceptible to both thermal and oxidative degradation. It usually contains 300—1000 ppm of an antioxidant such as 2,6-di-/ f2 -butyl-4-hydroxytoluene (BHT) to prevent oxidation under normal storage and handling conditions. Thermal decomposition in an inert atmosphere starts at 210—220°C (410—430°E) with the formation of highly flammable THE. In the presence of acidic impurities, the decomposition temperature can be significantly reduced contact with acids should therefore be avoided, and storage temperatures have to be controlled to prevent decomposition to THF (261). [Pg.365]

Up until 1986 the major use for 2-j -butylphenol was in the production of the herbicide, 2-j -butyl-4,6-dinitrophenol [88-85-7] which was used as a pre- and postemergent herbicide and as a defoHant for potatoes (30). The EPA banned its use in October 1986 based on a European study which showed that workers who came in contact with 2-j -butyl-4,6-dinitrophenol experienced an abnormally high rate of reproduction problems. Erance and the Netherlands followed with a ban in 1991. A significant volume of 2-j -butyl-4,6-dinitrophenol is used worldwide as a polymerization inhibitor in the production of styrene where it is added to the reboiler of the styrene distillation tower to prevent the formation of polystyrene (31). OSBP is used in the Par East as the carbamate derivative, 2-j -butylphenyl-Ai-methylcarbamate [3766-81-2] (BPMC) (32). BPMC is an insecticide used against leaf hoppers which affect the rice fields. [Pg.66]

Copolymers of diallyl itaconate [2767-99-9] with AJ-vinylpyrrolidinone and styrene have been proposed as oxygen-permeable contact lenses (qv) (77). Reactivity ratios have been studied ia the copolymerization of diallyl tartrate (78). A lens of a high refractive iadex n- = 1.63) and a heat distortion above 280°C has been reported for diallyl 2,6-naphthalene dicarboxylate [51223-57-5] (79). Diallyl chlorendate [3232-62-0] polymerized ia the presence of di-/-butyl peroxide gives a lens with a refractive iadex of n = 1.57 (80). Hardness as high as Rockwell 150 is obtained by polymerization of triaHyl trimeUitate [2694-54-4] initiated by benzoyl peroxide (81). [Pg.87]

Propylene oxide [75-56-9] (methyloxirane, 1,2-epoxypropane) is a significant organic chemical used primarily as a reaction intermediate for production of polyether polyols, propylene glycol, alkanolamines (qv), glycol ethers, and many other useful products (see Glycols). Propylene oxide was first prepared in 1861 by Oser and first polymerized by Levene and Walti in 1927 (1). Propylene oxide is manufactured by two basic processes the traditional chlorohydrin process (see Chlorohydrins) and the hydroperoxide process, where either / fZ-butanol (see Butyl alcohols) or styrene (qv) is a co-product. Research continues in an effort to develop a direct oxidation process to be used commercially. [Pg.133]

Butyl and Halobutyl Rubber. Butyl mbber is made by the polymerization of isobutylene a small amount of isoprene is added to provide sites for curing. It is designated HR because of these monomers. Halogenation of butyl mbber with bromine or chlorine increases the reaction rate for vulcanization and laminates or blends of halobutyl are feasible for production of mbber goods. It is estimated that of the - 100 million kg of butyl (UR) and halobutyl (HIIR) mbber in North America, over 90% is used in tire apphcations. The halogenated polymer is used in the innerliner of tubeless tires. Butyl mbber is used to make innertubes and curing bladders. The two major suppHers of butyl and halobutyl polymers in North America are Exxon and Bayer (see ELASTOLffiRS,SYNTHETIC-BUTYLrubber). [Pg.232]

Rubber. The mbber industry consumes finely ground metallic selenium and Selenac (selenium diethyl dithiocarbamate, R. T. Vanderbilt). Both are used with natural mbber and styrene—butadiene mbber (SBR) to increase the rate of vulcanization and improve the aging and mechanical properties of sulfudess and low sulfur stocks. Selenac is also used as an accelerator in butyl mbber and as an activator for other types of accelerators, eg, thiazoles (see Rubber chemicals). Selenium compounds are useflil as antioxidants (qv), uv stabilizers, (qv), bonding agents, carbon black activators, and polymerization additives. Selenac improves the adhesion of polyester fibers to mbber. [Pg.337]

Catalysts. Silver and silver compounds are widely used in research and industry as catalysts for oxidation, reduction, and polymerization reactions. Silver nitrate has been reported as a catalyst for the preparation of propylene oxide (qv) from propylene (qv) (58), and silver acetate has been reported as being a suitable catalyst for the production of ethylene oxide (qv) from ethylene (qv) (59). The solubiUty of silver perchlorate in organic solvents makes it a possible catalyst for polymerization reactions, such as the production of butyl acrylate polymers in dimethylformamide (60) or the polymerization of methacrylamide (61). Similarly, the solubiUty of silver tetrafiuoroborate in organic solvents has enhanced its use in the synthesis of 3-pyrrolines by the cyclization of aHenic amines (62). [Pg.92]


See other pages where Butyl polymerization is mentioned: [Pg.483]    [Pg.909]    [Pg.483]    [Pg.909]    [Pg.72]    [Pg.72]    [Pg.319]    [Pg.200]    [Pg.489]    [Pg.140]    [Pg.144]    [Pg.778]    [Pg.788]    [Pg.896]    [Pg.170]    [Pg.386]    [Pg.356]    [Pg.13]    [Pg.245]    [Pg.269]    [Pg.324]    [Pg.379]    [Pg.115]    [Pg.127]    [Pg.210]    [Pg.294]    [Pg.352]    [Pg.360]    [Pg.364]    [Pg.42]    [Pg.88]    [Pg.328]    [Pg.252]    [Pg.313]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Batch polymerization emulsion, butyl

Butyl acrylate emulsion polymerization

Butyl acrylate polymerization

Butyl acrylate polymerization Rayleigh-Taylor instability with

Butyl acrylate polymerization descending front

Butyl acrylate, dilute solution polymerization

Butyl vinyl ether, cationic polymerization

Chain polymerization butyl rubber

Methyl methacrylate butyl lithium polymerized

Polymerization butyl acrylate-methyl methacrylate batch emulsion

Radical polymerization tert-butyl acrylate

Radical polymerization tert-butyl methacrylate

Tert-Butyl bromide polymerization

© 2024 chempedia.info