Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bond monoxides

We consider first some experimental observations. In general, the initial heats of adsorption on metals tend to follow a common pattern, similar for such common adsorbates as hydrogen, nitrogen, ammonia, carbon monoxide, and ethylene. The usual order of decreasing Q values is Ta > W > Cr > Fe > Ni > Rh > Cu > Au a traditional illustration may be found in Refs. 81, 84, and 165. It appears, first, that transition metals are the most active ones in chemisorption and, second, that the activity correlates with the percent of d character in the metallic bond. What appears to be involved is the ability of a metal to use d orbitals in forming an adsorption bond. An old but still illustrative example is shown in Fig. XVIII-17, for the case of ethylene hydrogenation. [Pg.715]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Calculate the bond length, ioni7 ation potential, and dipole moment of carbon monoxide by MNDO,. AMI, and PM3,... [Pg.297]

Hydroformylation (Section 17 5) An industrial process for prepanng aldehydes (RCH2CH2CH=0) by the reaction of terminal alkenes (RCH=CH2) with carbon monoxide Hydrogenation (Section 6 1) Addition of H2 to a multiple bond... [Pg.1286]

Furan is produced from furfural commercially by decarbonylation loss of carbon monoxide from furfural gives furan direcdy. Tetrahydrofuran (3) is the saturated analogue containing no double bonds. [Pg.74]

DiisononylPhthalate andDiisodeeylPhthalate. These primary plasticizers are produced by esterification of 0x0 alcohols of carbon chain length nine and ten. The 0x0 alcohols are produced through the carbonylation of alkenes (olefins). The carbonylation process (eq. 3) adds a carbon unit to an alkene chain by reaction with carbon monoxide and hydrogen with heat, pressure, and catalyst. In this way a Cg alkene is carbonylated to yield a alcohol a alkene is carbonylated to produce a C q alcohol. Due to the distribution of the C=C double bond ia the alkene and the varyiag effectiveness of certain catalysts, the position of the added carbon atom can vary and an isomer distribution is generally created ia such a reaction the nature of this distribution depends on the reaction conditions. Consequendy these alcohols are termed iso-alcohols and the subsequent phthalates iso-phthalates, an unfortunate designation ia view of possible confusion with esters of isophthaUc acid. [Pg.122]

Organometallic Compounds. Mononuclear carbon monoxide complexes of palladium are relatively uncommon because of palladium s high labihty, tendency to be reduced, and competing migratory insertion reactions in the presence of a Pd—C bond (201). A variety of multinuclear compounds... [Pg.182]

Boron Monoxide and Dioxide. High temperature vapor phases of BO, B2O3, and BO2 have been the subject of a number of spectroscopic and mass spectrometric studies aimed at developiag theories of bonding, electronic stmctures, and thermochemical data (1,34). Values for the principal thermodynamic functions have been calculated and compiled for these gases (35). [Pg.191]

The bonding between carbon monoxide and transition-metal atoms is particularly important because transition metals, whether deposited on soHd supports or present as discrete complexes, are required as catalysts for the reaction between carbon monoxide and most organic molecules. A metal—carbon ( -bond forms by overlapping of metal orbitals with orbitals on carbon. Multiple-bond character between the metal and carbon occurs through formation of a metal-to-CO TT-bond by overlap of metal-i -TT orbitals with empty antibonding orbitals of carbon monoxide (Fig. 1). [Pg.50]

Fig. 1. (a) Formation of a ( -bond between a transition metal and carbon monoxide, (b) Metal-to-carbon monoxide TT-bond formation. [Pg.50]

A weakened carbon—oxygen bond results from the combined ( - and TT-bonding, allowing the metal-bonded carbon monoxide to react more readily... [Pg.50]

Low Oxidation State Chromium Compounds. Cr(0) compounds are TT-bonded complexes that require electron-rich donor species such as CO and C H to stabilize the low oxidation state. A direct synthesis of Cr(CO)g, from the metal and CO, is not possible. Normally, the preparation requires an anhydrous Cr(III) salt, a reducing agent, an arene compound, carbon monoxide that may or may not be under high pressure, and an inert atmosphere (see Carbonyls). [Pg.134]

G-19 Dicarboxylic Acids. The C-19 dicarboxyhc acids are generally mixtures of isomers formed by the reaction of carbon monoxide on oleic acid. Since the reaction produces a mixture of isomers, no single chemical name can be used to describe them. Names that have been used include 2-nonyldecanedioic acid, 2-octylundecanedioic acid, l,8-(9)-heptadecanedicarboxyhc acid, and 9-(10)-carboxystearic acid. The name 9-(10)-carboxystearic acid can be used correctiy if the product is made with no double bond isomerization (rhodium triphenylphosphine catalyst system). [Pg.63]

C-19 dicarboxyhc acid can be made from oleic acid or derivatives and carbon monoxide by hydroformylation, hydrocarboxylation, or carbonylation. In hydroformylation, ie, the Oxo reaction or Roelen reaction, the catalyst is usually cobalt carbonyl or a rhodium complex (see Oxo process). When using a cobalt catalyst a mixture of isomeric C-19 compounds results due to isomerization of the double bond prior to carbon monoxide addition (80). [Pg.63]

Carbonylation, or the Koch reaction, can be represented by the same equation as for hydrocarboxylation. The catalyst is H2SO4. A mixture of C-19 dicarboxyhc acids results due to extensive isomerization of the double bond. Methyl-branched isomers are formed by rearrangement of the intermediate carbonium ions. Reaction of oleic acid with carbon monoxide at 4.6 MPa (45 atm) using 97% sulfuric acid gives an 83% yield of the C-19 dicarboxyhc acid (82). Further optimization of the reaction has been reported along with physical data of the various C-19 dibasic acids produced. The mixture of C-19 acids was found to contain approximately 25% secondary carboxyl and 75% tertiary carboxyl groups. As expected, the tertiary carboxyl was found to be very difficult to esterify (80,83). [Pg.63]

Thiirane 1,1-dioxides extrude sulfur dioxide readily (70S393) at temperatures usually in the range 50-100 °C, although some, such as c/s-2,3-diphenylthiirane 1,1-dioxide or 2-p-nitrophenylthiirane 1,1-dioxide, lose sulfur dioxide at room temperature. The extrusion is usually stereospeciflc (Scheme 10) and a concerted, non-linear chelotropic expulsion of sulfur dioxide or a singlet diradical mechanism in which loss of sulfur dioxide occurs faster than bond rotation may be involved. The latter mechanism is likely for episulfones with substituents which can stabilize the intermediate diradical. The Ramberg-Backlund reaction (B-77MI50600) in which a-halosulfones are converted to alkenes in the presence of base, involves formation of an episulfone from which sulfur dioxide is removed either thermally or by base (Scheme 11). A similar conversion of a,a -dihalosulfones to alkenes is effected by triphenylphosphine. Thermolysis of a-thiolactone (5) results in loss of carbon monoxide rather than sulfur (Scheme 12). [Pg.141]

Diphenylthiirene 1-oxide reacts with hydroxylamine to give the oxime of benzyl phenyl ketone (79JA390). The reaction probably occurs by addition to the carbon-carbon double bond followed by loss of sulfur monoxide (Scheme 80). Dimethylamine adds to the double bond of 2,3-diphenylthiirene 1,1-dioxide with loss of sulfur dioxide (Scheme 81) (75JOC3189). Azide ion gives seven products, one of which involves cleavage of the carbon-carbon bond of an intermediate cycloadduct (Scheme 81) (80JOC2604). [Pg.159]

Examples of perfluoroalkyl iodide addition to the triple bond include free radical addition of perfluoropropyl iodide to 1 -heptyne [28] (equation 21), thermal and free radical-initiated addition of lodoperfluoroalkanesulfonyl fluorides to acetylene [29] (equation 22), thermal addition of perfluoropropyl iodide to hexa-fluoro 2 butyne [30] (equation 23), and palladium-catalyzed addition of per-fluorobutyl iodide to phenylacetylene [31] (equation 24) The E isomers predominate in these reactions Photochemical addition of tnfluoromethyl iodide to vinylacetylene gives predominantly the 1 4 adduct by addition to the double bond [32] Platinum catalyzed addition of perfluorooctyl iodide to l-hexyne in the presence of potassium carbonate, carbon monoxide, and ethanol gives ethyl () per fluorooctyl-a-butylpropenoate [JJ] (equation 25)... [Pg.763]


See other pages where Bond monoxides is mentioned: [Pg.714]    [Pg.163]    [Pg.231]    [Pg.86]    [Pg.40]    [Pg.1150]    [Pg.265]    [Pg.35]    [Pg.235]    [Pg.434]    [Pg.74]    [Pg.184]    [Pg.189]    [Pg.164]    [Pg.525]    [Pg.50]    [Pg.62]    [Pg.62]    [Pg.86]    [Pg.464]    [Pg.465]    [Pg.271]    [Pg.488]    [Pg.488]    [Pg.274]    [Pg.139]    [Pg.156]    [Pg.218]    [Pg.37]    [Pg.37]    [Pg.332]    [Pg.1150]   
See also in sourсe #XX -- [ Pg.417 ]




SEARCH



Bonding and Spectroscopic Behavior of Carbon Monoxide

Bonding of Carbon Monoxide to Metals

Carbon monoxide adsorption bonding

Carbon monoxide back bonding

Carbon monoxide bond formation, mechanism

Carbon monoxide bond length

Carbon monoxide bonding

Carbon monoxide bonding geometry

Carbon monoxide bonds

Carbon monoxide bridge-bonded

Carbon monoxide ligands hydrogen bonds

Carbon monoxide linear-bond

Carbon monoxide metal bonding

Carbon monoxide terminal £-bonded complexes

Carbon monoxide transition metal bonding

Carbon monoxide with hydrogen-bonding acceptors

Carbon monoxide, bond dissociation

Carbon monoxide, bond dissociation energy

Hydrogen Bonds to Carbon Monoxide Ligands

Metal-carbon monoxide bond strength

Nitrogen monoxide reversible bonding

© 2024 chempedia.info