Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Birch reduction solvent

Estrone methyl ether (100 g, 0.35 mole) is mixed with 100 ml of absolute ethanol, 100 ml of benzene and 200 ml of triethyl orthoformate. Concentrated sulfuric acid (1.55 ml) is added and the mixture is stirred at room temperature for 2 hr. The mixture is then made alkaline by the addition of excess tetra-methylguanidine (ca. 4 ml) and the organic solvents are removed. The residue is dissolved in heptane and the solution is filtered through Celite to prevent emulsions in the following extraction. The solution is then washed threetimes with 500 ml of 10 % sodium hydroxide solution in methanol to remove excess triethyl orthoformate, which would interfere with the Birch reduction solvent system. The heptane solution is dried over sodium sulfate and the solvent is removed. The residue is satisfactory for the Birch reduction step. Infrared analysis shows that the material contains 1.3-1.5% of estrone methyl ether. The pure ketal may be obtained by crystallization from anhydrous ethanol, mp 99-100°. Acidification of the methanolic sodium hydroxide washes affords 10-12 g of recovered estrone methyl ether. [Pg.51]

The less hindered f/ans-olefins may be obtained by reduction with lithium or sodium metal in liquid ammonia or amine solvents (Birch reduction). This reagent, however, attacks most polar functional groups (except for carboxylic acids R.E.A. Dear, 1963 J. Fried, 1968), and their protection is necessary (see section 2.6). [Pg.100]

The crude ketal from the Birch reduction is dissolved in a mixture of 700 ml ethyl acetate, 1260 ml absolute ethanol and 31.5 ml water. To this solution is added 198 ml of 0.01 Mp-toluenesulfonic acid in absolute ethanol. (Methanol cannot be substituted for the ethanol nor can denatured ethanol containing methanol be used. In the presence of methanol, the diethyl ketal forms the mixed methyl ethyl ketal at C-17 and this mixed ketal hydrolyzes at a much slower rate than does the diethyl ketal.) The mixture is stirred at room temperature under nitrogen for 10 min and 56 ml of 10% potassium bicarbonate solution is added to neutralize the toluenesulfonic acid. The organic solvents are removed in a rotary vacuum evaporator and water is added as the organic solvents distill. When all of the organic solvents have been distilled, the granular precipitate of 1,4-dihydroestrone 3- methyl ether is collected on a filter and washed well with cold water. The solid is sucked dry and is dissolved in 800 ml of methyl ethyl ketone. To this solution is added 1600 ml of 1 1 methanol-water mixture and the resulting mixture is cooled in an ice bath for 1 hr. The solid is collected, rinsed with cold methanol-water (1 1), air-dried, and finally dried in a vacuum oven at 60° yield, 71.5 g (81 % based on estrone methyl ether actually carried into the Birch reduction as the ketal) mp 139-141°, reported mp 141-141.5°. The material has an enol ether assay of 99%, a residual aromatics content of 0.6% and a 19-norandrost-5(10)-ene-3,17-dione content of 0.5% (from hydrolysis of the 3-enol ether). It contains less than 0.1 % of 17-ol and only a trace of ketal formed by addition of ethanol to the 3-enol ether. [Pg.52]

Liquefaction Solvents. The solvents used in the present study are listed in Tables 2 and 3. Alkylated and hydrogenated pyrenes were synthesized by Friedel-Crafts and Birch reduction, respectively. Details have ° been described in another place (9). [Pg.257]

The Birch reduction has been used by several generations of synthetic organic chemists for the conversion of readily available aromatic compounds to alicyclic synthetic intermediates. Birch reductions are carried out with an alkali metal in liquid NH3 solution usually with a co-solvent such as THF and always with an alcohol or related acid to protonate intermediate radical anions or related species. One of the most important applications of the Birch reduction is the conversion of aryl alkyl ethers to l-alkoxycyclohexa-l,4-dienes. These extremely valuable dienol ethers provide cyclohex-3-en-l-ones by mild acid hydrolysis or cyclohex-2-en-l-ones when stronger acids are used (Scheme 1). [Pg.1]

Birch reduction of the chiral benzamide 5 generates the amide enolate 6 (Scheme 4). This enolate has been characterized by NMR spectroscopy and by an extensive examination of the effects of changes in alkali metal, solvent, reaction... [Pg.2]

However, benzene and its derivatives can be reduced to cyclohexa-dienes by solutions of metals such as Li, Na, K, Zn, and Hg in a weakly acidic solvent, such as liquid ammonia, amines, or ether-alcohol mixtures. This general type of reaction is known as the Birch reduction after the Australian chemist, A. J. Birch. With benzene, reduction with metals leads to 1,4-cyclo-hexadiene ... [Pg.1074]

There is no standard, universal, procedure for the Birch reduction. Experiment 7.19 illustrates some of the variants which have been reported in the literature. The original Birch procedure is to add small pieces of sodium metal to a solution of the aromatic compound in a mixture of liquid ammonia and the proton source (ethanol).18 After completion of the reaction, which is usually indicated by the disappearance of the blue colour, it is quenched by the addition of ammonium chloride and the ammonia allowed to evaporate before the cautious addition of water, and isolation of the product by ether extraction. In a modified procedure a co-solvent (ether, tetrahydrofuran, etc.) is initially added to the solution of aromatic compound/liquid ammonia prior to the addition of metal lithium metal is often used in place of sodium.19a,b In general these latter procedures are used for substrates which are more difficult to reduce. Redistilled liquid ammonia is found to be beneficial since the common contaminant iron, in collodial form or in the form of its salts, has a deleterious effect on the reaction.20 A representative selection of procedures is given in Expt 7.19 for the reduction of o-xylene, anisole, benzoic acid, and 3,4,5-trimethoxybenzoic acid. [Pg.1115]

As early as 1969, Pedersen was intrigued by the intense blue colour observed upon dissolution of small quantities of sodium or potassium metal in coordinating organic solvents in the presence of crown ethers. Indeed, the history of alkali metal (as opposed to metal cation) solution chemistry may be traced back to an 1808 entry in the notebook of Sir Humphry Davy, concerning the blue or bronze colour of potassium-liquid ammonia solutions. This blue colour is attributed to the presence of a solvated form of free electrons. It is also observed upon dissolution of sodium metal in liquid ammonia, and is a useful reagent for dissolving metal reductions , such as the selective reduction of arenes to 1,4-dienes (Birch reduction). Alkali metal solutions in the presence of crown ethers and cryptands in etheric solvents are now used extensively in this context. The full characterisation of these intriguing materials had to wait until 1983, however, when the first X-ray crystal structure of an electride salt (a cation with an electron as the counter anion) was obtained by James L. Dye and... [Pg.229]

A normal alkene is not reduced under the conditions of the Birch reduction because its pi antibonding MO is too high in energy for an electron from a sodium atom to be readily added to it. However, as shown in the following example, a carbon-carbon double bond that is conjugated with a carbonyl group is readily reduced by lithium or sodium metal in liquid ammonia solvent, without any added alcohol. [Pg.943]

The mechanism of the Birch reduction (shown next) is similar to the sodium/liquid ammonia reduction of alkynes to fnmy-alkencs (Section 9-9C). A solution of sodium in liquid ammonia contains solvated electrons that can add to benzene, forming a radical anion. The strongly basic radical anion abstracts a proton from the alcohol in the solvent, giving a cyclohexadienyl radical. The radical quickly adds another solvated electron to form a cyclohexadienyl anion. Protonation of this anion gives the reduced product. [Pg.797]

The partial reduction of arenes can be achieved using the Birch reduction An alkali metal (lithium, sodium or potassium) is dissolved in liquid ammonia in the presence of the arene, an alcohol, such as 2-methylpropan-2-ol tert-buty alcohol) and a co-solvent to assist solubility. [Pg.130]

Photochemical electron transfer reactions of electron donor-acceptor pairs in polar solvents provide a convenient and effective method for the generation of radical cations which can be trapped by complex metal hydrides. One of the most effective systems is based on irradiation of a solution of substrate, sodium borohydride and 1,4- or 1,3-dicyanobenzene. A range of bi- and poly-cyclic aromatic hydrocarbons has been converted into the dihydro derivatives in this way. An especially important aspect of this route to dihydroaromatic compounds is that it may give access to products which are regioisomeric with the standard Birch reduction products. Thus, o-xylene is converted into the 1,4-dihydro product (229) rather than the normal 3,6-dihydro isomer (228). The m- and p-xylenes are similarly reduced to (230) and (231), respectively. ... [Pg.517]

Solvent effects Birch reduction. 1,2-Dimethoxyethane (Glyme) and Dimethyl ether (see Naphthalene-Sodium), Dimethylformamide. Dimethyl sulfone. Dimethyl sulfoxide. Diphenyl sulfoxide. Ethylene glycol. N-EthylmorphoUne. Hexamethylphosphoric triamide. Methylal. Methylene chloride. Methyl ethyl ketone. N-Methyl-2-pyrrolidone. Nitrometbane. Nitrosyl chloride. Phenetole. Tetrahydrofurane. Tetramethylene sulfone. Tetramethylene sulfoxide. Triethanolamine. Triethyl phosphate. Trifluoroacetic acid,... [Pg.661]

When tert-butyl alcohol is used with the calcium-amine system, aromatic compounds can be reduced to products identical with those obtained by Birch reduction of the same substrates [37]. Advantages of the calcium-amine-alcohol procedure are, first, that calcium is much safer to handle than sodium and lithium and is therefore more amenable to large-scale reductions, and, second, the amine solvents are relatively high-boiling and are, therefore, much easier to manipulate than liquid ammonia. [Pg.167]


See other pages where Birch reduction solvent is mentioned: [Pg.10]    [Pg.25]    [Pg.1010]    [Pg.438]    [Pg.23]    [Pg.140]    [Pg.781]    [Pg.14]    [Pg.35]    [Pg.284]    [Pg.665]    [Pg.105]    [Pg.817]    [Pg.942]    [Pg.606]    [Pg.312]    [Pg.243]    [Pg.591]    [Pg.1130]    [Pg.2475]    [Pg.2069]    [Pg.67]    [Pg.761]    [Pg.390]    [Pg.433]    [Pg.260]    [Pg.290]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



Birch

Birch reduction

Birching

Solvent reduction

© 2024 chempedia.info