Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biodegradable polymer classes

The most commercially important biodegradable polymers can be broadly divided into three families  [Pg.178]

Three broad classes of commercially important biodegradable polymers are discussed in this chapter  [Pg.185]

unmodified polymers that are naturally susceptible to microbial-enzyme attack, [Pg.186]


Biodegradable polymers and plastics are readily divided into three broad classifications (/) natural, (2) synthetic, and (J) modified natural. These classes may be further subdivided for ease of discussion, as follows (/) natural polymers (2) synthetic polymers may have carbon chain backbones or heteroatom chain backbones and (J) modified natural may be blends and grafts or involve chemical modifications, oxidation, esterification, etc. [Pg.477]

Heteroatom Chain Backbone Polymers. This class of polymers includes polyesters, which have been widely studied from the initial period of research on biodegradable polymers, polyamides, polyethers, polyacetals, and other condensation polymers. Their linkages are quite frequendy found in nature and these polymers are more likely to biodegrade than hydrocarbon-based polymers. [Pg.480]

Polylactates are an interesting class of biodegradable polymers which may be made from either renewable or petroleum feedstocks. The synthesis of lactic acid raises real issues concerning the relative greenness of the renewable and non-renewable (HCN) route as discussed in Chapter 2. A summary comparison of the greenness of both routes is shown is Table 6.4. Without a full LCA the choice of route on environmental grounds is not easy and at least partly depends on plant location and raw material availability. [Pg.196]

Our interest in the past few years has been on biodegradable polymers. We have been evaluating the potential of poly(phosphoesters) as degradable biomaterials (4).We were attracted to this class of polymers because the phosphoester bond in the backbone is cleavable under physiological conditions, the presence of the P-O-C group would facilitate fabrication, and the versatile chemical structure affords a wide... [Pg.141]

Aliphatic polyesters are one of the important classes of biodegradable polymers. Some important ejra mples are given below ... [Pg.158]

Apart from the all-carbon backbone, poly(vinyl ester)s also exhibit a unique 1,3-diol structure (see Fig. 1). This structure is a common motif in many natural materials, e.g. carbohydrates. A number of oxidative or reductive electron transfer processes catalysed by natural redox systems are imaginable for this motif. The 1,3-diol structure is unique for a synthetic polymer and cannot be found in any other synthetic polymer class of significance. This explains the unusual biodegradation properties discussed below. [Pg.145]

In the recent years, new markets have arisen for biodegradable polymers such as poly(butylene adipate-terephthalate), poly(lactide), poly(butylenesuccinate), or poly(3-hydroxybutyrate) and poly(carbonates). They constitute a new class of green polymers with wide application potential for packaging, clothing, carpets, applications in automotive engineering, foils, and utilities in agriculture. [Pg.374]

PHAs can consist of a diverse set of repeating unit structures and have been studied intensely because the physical properties of these biopolyesters can be similar to petrochemical-derived plastics such as polypropylene (see Table 1). These biologically produced polyesters have already found application as bulk commodity plastics, fishing lines, and for medical use. PHAs have also attracted much attention as biodegradable polymers that can be produced from biorenewable resources. Many excellent reviews on the in vivo or in vitro synthesis of PHAs and their properties and applications exist, underlining the importance of this class of polymers [2, 6, 7, 12, 26-32]. [Pg.26]

Poly(esters) (Table 11.2) are the first class of polymers discussed, as they are the most widely investigated of all of the polymer families for oral protein delivery. Poly(esters) used for oral drug delivery have primarily been biodegradable polymers (Figure 11.1). Biodegradation is the primary delivery mechanism for poly(ester) polymers used for protein and peptide delivery. The degradation properties of poly(esters) are dependent on the monomers used to produce the poly(ester). Several poly(esters) are discussed in detail in the following sections. [Pg.286]

Polyphosphazenes are a relatively new class of biodegradable polymers. Their hydrolytic stability or instability is determined not by changes in the backbone structure but by changes in the side groups attached to an unconventional macromolecular backbone. Synthetic flexibility and versatile adaptability of polyphosphazenes make them unique for drug delivery applications. For example, Veronese et al.18 prepared polyphos-phazene microspheres with phenylalanine ethyl ester as a phosphorous substituent and loaded it with succinylsulphathiazole or naproxen. The kinetics of release from these matrices were very convenient in yielding local concentrations of the two drugs that are useful per se or when mixed with hydroxyapatite for better bone formation. Polyphosphazene matrices are also considered as potential vehicles for the delivery of proteins and vaccines.19... [Pg.278]

There are broadly three classes of commercially available biodegradable polymers in existence. [Pg.14]

Starch-based materials represent the largest class of biodegradable polymer with 44,800 tonnes (including loose-fill foam packaging) consumed in 2005. Excluding loose-fill, starch-based materials amounted to 21,700 tonnes in 2005. Polylactic acid (PLA) is the second largest material class with 35,800 tonnes in 2005, followed by synthetic aliphatic-aromatic copolyesters with 14,000 tonnes. The embryonic PHA category amounts to around 250 tonnes. [Pg.42]

Fatty acid based biodegradable polymers have many biomedical applications. This short review focuses on controlled drug delivery using two classes of the polymers polyanhydrides and polyesters based on fatty acids as drug carriers. Different polymer types and compositions are summarized showing the potential of these polymers as drug carriers. [Pg.96]


See other pages where Biodegradable polymer classes is mentioned: [Pg.4]    [Pg.14]    [Pg.55]    [Pg.178]    [Pg.185]    [Pg.4]    [Pg.14]    [Pg.55]    [Pg.178]    [Pg.185]    [Pg.477]    [Pg.207]    [Pg.313]    [Pg.150]    [Pg.176]    [Pg.137]    [Pg.267]    [Pg.267]    [Pg.267]    [Pg.294]    [Pg.279]    [Pg.477]    [Pg.236]    [Pg.383]    [Pg.480]    [Pg.481]    [Pg.30]    [Pg.275]    [Pg.6]    [Pg.11]    [Pg.15]    [Pg.17]    [Pg.43]    [Pg.23]    [Pg.284]    [Pg.91]    [Pg.176]   
See also in sourсe #XX -- [ Pg.176 , Pg.180 ]




SEARCH



Biodegradable polymer common classes

Biodegradable polymers)

Biodegradation polymers

Polymers biodegradability

Polymers classes

© 2024 chempedia.info