Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bilayer solutions

UV-visible absorption spectrum in an aqueous bilayer solution... [Pg.51]

Photoisomerization of the azobenzene amphiphile was found to be strongly affected by molecular packing and orientation in the aqueous bilayer solutions. A rate constant of trans to cis isomerization was extremely faster in the liquid crystalline state than in the crystalline bilayer membrane [33]. Photoreaction of the aqueous bilayer membrane of CgAzoCioN+ Br was... [Pg.72]

The concentrations Ce and Cc of the monomer surfactant in the solution are important parameters for a given bilayer/solution system, as they determine the ability of the foam bilayer to exist in metastable equilibrium in the range Cc < C < Ce. For C > Ce the bilayer is... [Pg.252]

MLKJain, Order and dynamics in bilayers. Solute in Bilayers, in Jain M.K (Ed.), Introduction to Biological Membranes, John Wiley and Sons, (1988), New York, 122-165. [Pg.901]

Figure 2 Davydov splitting and crystal structures of azobenzene 2 bUayer assemblies, (a) UV-vis absorption spectra of aqueous bilayer solutions and ethanol solution. Similar spectral splitting is observed in east films, (b) Schematic illustration of molecular orientation in single crystals. Figure 2 Davydov splitting and crystal structures of azobenzene 2 bUayer assemblies, (a) UV-vis absorption spectra of aqueous bilayer solutions and ethanol solution. Similar spectral splitting is observed in east films, (b) Schematic illustration of molecular orientation in single crystals.
Protems can be physisorbed or covalently attached to mica. Another method is to innnobilise and orient them by specific binding to receptor-fiinctionalized planar lipid bilayers supported on the mica sheets [15]. These surfaces are then brought into contact in an aqueous electrolyte solution, while the pH and the ionic strength are varied. Corresponding variations in the force-versus-distance curve allow conclusions about protein confomiation and interaction to be drawn [99]. The local electrostatic potential of protein-covered surfaces can hence be detemiined with an accuracy of 5 mV. [Pg.1741]

The adliesion and fiision mechanisms between bilayers have also been studied with the SEA [M, 100]. Kuhl et al [17] found that solutions of short-chained polymers (PEG) could produce a short-range depletion attraction between lipid bilayers, which clearly depends on the polymer concentration (fignre Bl.20.1 It. This depletion attraction was found to mduce a membrane fusion widiin 10 minutes that was observed, in real-time, using PECO fringes. There has been considerable progress in the preparation of fluid membranes to mimic natural conditions in the SEA [ ], which promises even more exciting discoveries in biologically relevant areas. [Pg.1742]

Figure Bl.20.11. Force curves of DMPC/DPPE (dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylethanolainine) bilayers across a solution of PEG at different concentrations. Clearly visible is a concentration-dependent depletion attraction, with pennission from [17],... Figure Bl.20.11. Force curves of DMPC/DPPE (dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylethanolainine) bilayers across a solution of PEG at different concentrations. Clearly visible is a concentration-dependent depletion attraction, with pennission from [17],...
Rutland M W and Parker J L 1994 Surface forces between silica surfaces in cationic surfactant solutions adsorption and bilayer formation at normal and high pH Langmuir 0 1110-21... [Pg.1749]

Most characteristics of amphiphilic systems are associated with the alteration of the interfacial stnicture by the amphiphile. Addition of amphiphiles might reduce the free-energy costs by a dramatic factor (up to 10 dyn cm in the oil/water/amphiphile mixture). Adding amphiphiles to a solution or a mixture often leads to the fomiation of a microenuilsion or spatially ordered phases. In many aspects these systems can be conceived as an assembly of internal interfaces. The interfaces might separate oil and water in a ternary mixture or they might be amphiphilic bilayers in... [Pg.2381]

In special cases (as in colloidal solutions) some particles can be considered as essential and other particles as irrelevant , but in most cases the essential space will itself consist of collective degrees of freedom. A reaction coordinate for a chemical reaction is an example where not a particle, but some function of the distance between atoms is considered. In a simulation of the permeability of a lipid bilayer membrane for water [132] the reaction coordinate was taken as the distance, in the direction perpendicular to the bilayer, between the center of mass of a water molecule and the center of mass of the rest of the system. In proteins (see below) a few collective degrees of freedom involving all atoms of the molecule, describe almost all the... [Pg.20]

The method has severe limitations for systems where gradients on near-atomic scale are important (as in the protein folding process or in bilayer membranes that contain only two molecules in a separated phase), but is extremely powerful for (co)polymer mixtures and solutions [147, 148, 149]. As an example Fig. 6 gives a snapshot in the process of self-organisation of a polypropylene oxide-ethylene oxide copolymer PL64 in aqueous solution on its way from a completely homogeneous initial distribution to a hexagonal structure. [Pg.27]

The identity of the moiety (other than glycerol) esterified to the phosphoric group determines the specific phosphoHpid compound. The three most common phosphoHpids in commercial oils are phosphatidylcholine or lecithin [8002-45-5] (3a), phosphatidylethanolamine or cephalin [4537-76-2] (3b), and phosphatidjlinositol [28154-49-7] (3c). These materials are important constituents of plant and animal membranes. The phosphoHpid content of oils varies widely. Laurie oils, such as coconut and palm kernel, contain a few hundredths of a percent. Most oils contain 0.1 to 0.5%. Com and cottonseed oils contain almost 1% whereas soybean oil can vary from 1 to 3% phosphoHpid. Some phosphoHpids, such as dipaLmitoylphosphatidylcholine (R = R = palmitic R" = choline), form bilayer stmetures known as vesicles or Hposomes. The bdayer stmeture can microencapsulate solutes and transport them through systems where they would normally be degraded. This property allows their use in dmg deHvery systems (qv) (8). [Pg.123]

The (I)-(III)-samples sorption ability investigation for cationic dyes microamounts has shown that for DG the maximum rate of extraction is within 70-90 % at pH 3. The isotherm of S-type proves the physical character of solution process and a seeming ionic exchange. Maximal rate of F extraction for all samples was 40-60 % at pH 8 due to electrostatic forces. The anionic dyes have more significant affinity to surface researching Al Oj-samples comparatively with cationic. The forms of obtained soi ption isotherms atpH have mixed character of H,F-type chemosorption mechanism of fonuation of a primary monolayer with the further bilayers formation due to H-bonds and hydrophobic interactions. The different values of pH p for sorbents and dyes confirm their multifunctional character and distinctions in the acid-base properties of adsoi ption centers. [Pg.266]

Simple considerations show that the membrane potential cannot be treated with computer simulations, and continuum electrostatic methods may constimte the only practical approach to address such questions. The capacitance of a typical lipid membrane is on the order of 1 j.F/cm-, which corresponds to a thickness of approximately 25 A and a dielectric constant of 2 for the hydrophobic core of a bilayer. In the presence of a membrane potential the bulk solution remains electrically neutral and a small charge imbalance is distributed in the neighborhood of the interfaces. The membrane potential arises from... [Pg.143]

Interdiffusion of bilayered thin films also can be measured with XRD. The diffraction pattern initially consists of two peaks from the pure layers and after annealing, the diffracted intensity between these peaks grows because of interdiffusion of the layers. An analysis of this intensity yields the concentration profile, which enables a calculation of diffusion coefficients, and diffusion coefficients cm /s are readily measured. With the use of multilayered specimens, extremely small diffusion coefficients (-10 cm /s) can be measured with XRD. Alternative methods of measuring concentration profiles and diffusion coefficients include depth profiling (which suffers from artifacts), RBS (which can not resolve adjacent elements in the periodic table), and radiotracer methods (which are difficult). For XRD (except for multilayered specimens), there must be a unique relationship between composition and the d-spacings in the initial films and any solid solutions or compounds that form this permits calculation of the compo-... [Pg.209]

J. A. Marques, K. A. Dill. Solute partitioning into chain molecule interphases monolayers, bilayer membranes and micelles. J Chem Phys 55 434—444, 1986. [Pg.551]

FIG. 1 Self-assembled structures in amphiphilic systems micellar structures (a) and (b) exist in aqueous solution as well as in ternary oil/water/amphiphile mixtures. In the latter case, they are swollen by the oil on the hydrophobic (tail) side. Monolayers (c) separate water from oil domains in ternary systems. Lipids in water tend to form bilayers (d) rather than micelles, since their hydrophobic block (two chains) is so compact and bulky, compared to the head group, that they cannot easily pack into a sphere [4]. At small concentrations, bilayers often close up to form vesicles (e). Some surfactants also form cyhndrical (wormlike) micelles (not shown). [Pg.632]

Bilayer phase transitions are sensitive to the presence of solutes that interact with lipids, including multivalent cations, lipid-soluble agents, peptides, and proteins. [Pg.270]


See other pages where Bilayer solutions is mentioned: [Pg.51]    [Pg.52]    [Pg.69]    [Pg.91]    [Pg.18]    [Pg.6046]    [Pg.123]    [Pg.121]    [Pg.477]    [Pg.51]    [Pg.52]    [Pg.69]    [Pg.91]    [Pg.18]    [Pg.6046]    [Pg.123]    [Pg.121]    [Pg.477]    [Pg.238]    [Pg.242]    [Pg.2579]    [Pg.2590]    [Pg.2601]    [Pg.2601]    [Pg.2816]    [Pg.411]    [Pg.609]    [Pg.125]    [Pg.352]    [Pg.202]    [Pg.468]    [Pg.469]    [Pg.207]    [Pg.141]    [Pg.711]    [Pg.262]    [Pg.263]    [Pg.264]   
See also in sourсe #XX -- [ Pg.120 ]




SEARCH



© 2024 chempedia.info