Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity benzoic acids

Table 5.3 Basic solvents. Reagents benzoic acid (acid) and tetra-n-butyl ammonium hydroxide (base)... Table 5.3 Basic solvents. Reagents benzoic acid (acid) and tetra-n-butyl ammonium hydroxide (base)...
Most of the heavy-atom IEs on acidity that have been measured are primary, simply because secondary IEs involving heavy atoms are so small as to be difficult to measure. Examples of secondary IEs are in Table 7. The data for the 13C IE on benzoic acid acidity were obtained by emf measurements with paired hydrogen electrodes, but the large apparent AAH° of 82 l0.1mol derived from the temperature dependence could not be reproduced computationally.71 Moreover, extrapolation suggests that the IE becomes inverse < 1) above 38°C. Therefore... [Pg.143]

PROBLEM Determine the ratio of benzoate (conjugate base) to benzoic acid (acid) in an aqueous solution at pH 7.0. The pKa of benzoic acid is 4.2. [Pg.222]

More recently benzoic acid derivatives (MW 122-170) have also been shown to be astringent (17). The most astringent compounds, salicylic (2-hydroxy benzoic acid) and gentisic (2,5 dihydroxy benzoic acid) acids, were ortho substituted, but neither had vicinal hydroxyl groups. Both derivatives had lower pHs than the non-ortho substituted ones, which may have contributed not only to sourness but also to astringency. McManus et al (1981) (18) proposed previously that simple phenols which contain 1,2 dihydroxy or 1,2,3 trihydroxy groups (such as epicatechin or catechin) may cross link and thereby precipitate proteins. It could be speculated that ortho substitution conveys some kind of binding capability similar to that of flavan-3-ols or polyphenolics of hi er MW. [Pg.158]

CeHs—COOH cyanide. Benzoic nitrile. Benzoic acid. Acid. [Pg.965]

Brand type Taste Formic Benzoic acid Acid HS/g ag/g Sorbic acid ag/g Lactic Glycerol acid ag/g ag/g Citric. acid ag/g Acetic Butyric Lactose Rumenic Linoleic Diglyc. Double acid Acid acid acid Bond ag/g ag/g mg/g % FA % FA % No./FA% ... [Pg.183]

Several benzoic acid derivatives have been described in leaves of various Piperaceae species. Thus, a prenylated benzoic acid acid derivative, crassinervic acid, has been isolated from Piper crassinervium. [Pg.57]

It is readily oxidized by air to benzoic acid. With aqueous KOH gives benzyl alcohol and benzoic acid. Gives addition products with hydrogen cyanide and sodium hydrogen sulphite. [Pg.54]

It was first described in 1608 when it was sublimed out of gum benzoin. It also occurs in many other natural resins. Benzoic acid is manufactured by the air oxidation of toluene in the liquid phase at 150°C and 4-6 atm. in the presence of a cobalt catalyst by the partial decarboxylation of phthalic anhydride in either the liquid or vapour phase in the presence of water by the hydrolysis of benzotrichloride (from the chlorination of toluene) in the presence of zinc chloride at 100°C. [Pg.56]

Much of the benzoic acid produced is converted to sodium benzoate, which is used as a food preservative (as is the acid) and a corrosion inhibi tor. Other important uses of the acid are in the manufacture of alkyd resins, plasticizers, caprolactam, dyestuffs and pharmaceuticals. [Pg.56]

Prepared by the dehydration of benzamide. Hydrolysed by dilute acids and alkalis to benzoic acid. Good solvent. benzopheDone,C]3HioO,PhC(0)Ph. Colourless rhombic prisms, m.p. 49 C, b.p. 306°C. Characteristic smell. It is prepared by the action of benzoyl chloride upon benzene in the presence of aluminium chloride (Friedel-Crafts reaction) or by the oxidation of di-phenylmethane. It is much used in perfumery. Forms a kelyl with sodium. [Pg.57]

It is prepared by fully chlorinating toluene. When heated with water at 100°C, or with lime, benzoic acid is obtained, benzoyl The group PhC(O)-. [Pg.57]

Cannizzaro reaction Two molecules of many aldehydes, under the influence of dilute alkalis, will interact, so that one is reduced to the corresponding alcohol, while the other is oxidized to the acid. Benzaldehyde gives benzyl alcohol and benzoic acid. Compare the aldol condensation. [Pg.78]

CgHgO, PhCH = CHCOiH. Colourless crystals. Decarboxylales on prolonged heating. Oxidized by nitric acid to benzoic acid. Ordinary cinnamic acid is the trans-isomer, m.p. 135-136 C on irradiation with u.v. light it can be isomerized to the less stable cis-isomer, m.p. 42" C. [Pg.100]

Hammen equation A correlation between the structure and reactivity in the side chain derivatives of aromatic compounds. Its derivation follows from many comparisons between rate constants for various reactions and the equilibrium constants for other reactions, or other functions of molecules which can be measured (e g. the i.r. carbonyl group stretching frequency). For example the dissociation constants of a series of para substituted (O2N —, MeO —, Cl —, etc.) benzoic acids correlate with the rate constant k for the alkaline hydrolysis of para substituted benzyl chlorides. If log Kq is plotted against log k, the data fall on a straight line. Similar results are obtained for meta substituted derivatives but not for orthosubstituted derivatives. [Pg.199]

Obtained synthetically by one of the following processes fusion of sodium ben-zenesulphonate with NaOH to give sodium phenate hydrolysis of chlorobenzene by dilute NaOH at 400 C and 300atm. to give sodium phenate (Dow process) catalytic vapour-phase reaction of steam and chlorobenzene at 500°C (Raschig process) direct oxidation of cumene (isopropylbenzene) to the hydroperoxide, followed by acid cleavage lo propanone and phenol catalytic liquid-phase oxidation of toluene to benzoic acid and then phenol. Where the phenate is formed, phenol is liberated by acidification. [Pg.303]

Aluminum complex greases, obtained by the reaction of aluminum isopropylate with a mixture of benzoic acid and fatty acids. These greases have a remarkable resistance to water, very good adhesion to metallic surfaces, good mechanical stability properties and resistance to temperature. They are less common than the first two types. [Pg.281]

With most non-isothemial calorimeters, it is necessary to relate the temperature rise to the quantity of energy released in the process by determining the calorimeter constant, which is the amount of energy required to increase the temperature of the calorimeter by one degree. This value can be detemiined by electrical calibration using a resistance heater or by measurements on well-defined reference materials [1], For example, in bomb calorimetry, the calorimeter constant is often detemiined from the temperature rise that occurs when a known mass of a highly pure standard sample of, for example, benzoic acid is burnt in oxygen. [Pg.1902]

The logarithm of the equilibrium constant, K,. for the chemical equation shown in Figure 3-8a for a substituted benzoic acid can be related to the logarithm of the... [Pg.180]

Figure 3-8 a) The dissociation of substituted benzoic acids (X = substituent), and b) the hydrolysis of benzoic acid methyl esters. [Pg.181]

A limitation of the ap and tt descriptors is the specificity of the atom typing, e.g., benzoic acid and phenyltetrazole would not be perceived as very similar, even though carboxylates and tetrazoles are both anions at physiological pH. [Pg.311]

Fig. 12.20 4-Acetamido benzoic acid. Triangle smoothing predicts that the lower bound distance between the amide nitrogen and the carbonyl oxygen is equal to the sum of the van der Waals radii. The actual distance is about 6.4A. Fig. 12.20 4-Acetamido benzoic acid. Triangle smoothing predicts that the lower bound distance between the amide nitrogen and the carbonyl oxygen is equal to the sum of the van der Waals radii. The actual distance is about 6.4A.
Benzoic acid Succinic. anhydride Hexacetyl mannitol ... [Pg.6]

Place 20 g. of benzoic acid and 20 ml. (16 g.) of ethanol in A, connect up the apparatus, and then heat the flask on a sand-bath so that the solution in the flask boils gently. At the same time, pass a brisk current of hydrogen chloride into the reaction... [Pg.104]

When the phenol contains a carboxylic acid group, e.g., m- or p-hydroxy-benzoic acid, the acetylated derivative will of course remain in solution as the sodium salt, but is precipitated when the solution is subsequently acidified. Salicylic acid, however, cannot be acetylated under these conditions. [Pg.109]

It should be noted that aliphatic compounds (except the paraffins) are usually oxidised by concentrated nitric acid, whereas aromatic compounds (including the hydrocarbons) are usually nitrated by the concentrated acid (in the presence of sulphuric acid) and oxidised by the dilute acid. As an example of the latter, benzaldehyde, CjHsCHO, when treated with concentrated nitric acid gives ffi-nitrobenzaldehyde, N02CgH4CH0, but with dilute nitric acid gives benzoic acid, CgHgCOOH. [Pg.112]

Place I g. of benzamide and 15 ml. of 10% aqueous sodium hydroxide solution in a 100 ml. conical flask fitted with a reflux water-condenser, and boil the mixture gently for 30 minutes, during which period ammonia is freely evolved. Now cool the solution in ice-water, and add concentrated hydrochloric acid until the mixture is strongly acid. Benzoic acid immediately separates. Allow the mixture to stand in the ice-water for a few minutes, and then filter off the benzoic add at the pump, wash with cold water, and drain. Recrystallise from hot water. The benzoic acid is obtained as colourless crystals, m.p. 121°, almost insoluble in cold water yield, o 8 g. (almost theoretical). Confirm the identity of the benzoic acid by the tests given on p. 347. [Pg.120]

Benzamide from Benzonitrile. (A) Although benzonitrile when boiled with 70% sulphuric acid undergoes ready hydrolysis to benzoic acid (see above), treatment with hot 90% sulphuric acid gives the intermediate benzamide. This difference arises partly from the difference in temperature employed, but also... [Pg.193]

Hydrolysis of />-Tolunitrile. As in the case of benzonitrile, alkaline h> drolysis is preferable to hydrolysis by 70% sulphuric acid. Boil a mixture of 5 g. of p-tolunitrile, 75 ml. of 10% aqueous sodium hydroxide solution and 15 ml. of ethanol under a reflux water-condenser. The ethanol is added partly to increase the speed of the hydrolysis, but in particular to prevent the nitrile (which volatilises in the steam) from actually crystallising in the condenser. The solution becomes clear after about i hour s heating, but the boiling should be continued for a total period of 1-5 hours to ensure complete hydrolysis. Then precipitate and isolate the p-toluic acid, CH3CgH4COOH, in precisely the same way as the benzoic acid in the above hydrolysis of benzonitrile. Yield 5 5 g. (almost theoretical). The p-toluic acid has m.p. 178°, and may be recrystallised from a mixture of equal volumes of water and rectified spirit. [Pg.195]

Prepare a mixture of 30 ml, of aniline, 8 g. of o-chloro-benzoic acid, 8 g. of anhydrous potassium carbonate and 0 4 g. of copper oxide in a 500 ml. round-bottomed flask fitted with an air-condenser, and then boil the mixture under reflux for 1 5 hours the mixture tends to foam during the earlier part of the heating owing to the evolution of carbon dioxide, and hence the large flask is used. When the heating has been completed, fit the flask with a steam-distillation head, and stcam-distil the crude product until all the excess of aniline has been removed. The residual solution now contains the potassium. V-phenylanthrani-late add ca. 2 g. of animal charcoal to this solution, boil for about 5 minutes, and filter hot. Add dilute hydrochloric acid (1 1 by volume) to the filtrate until no further precipitation occurs, and then cool in ice-water with stirring. Filter otT the. V-phcnylanthranilic acid at the pump, wash with water, drain and dry. Yield, 9-9 5 g. I he acid may be recrystallised from aqueous ethanol, or methylated spirit, with addition of charcoal if necessary, and is obtained as colourless crystals, m.p. 185-186°. [Pg.217]

Benzyl Alcohol, CeH5CH20H, and Benzoic Acid, CaHsCOOH. (Cannizzaro s Reaction). [Pg.231]


See other pages where Acidity benzoic acids is mentioned: [Pg.104]    [Pg.647]    [Pg.14]    [Pg.70]    [Pg.129]    [Pg.36]    [Pg.55]    [Pg.56]    [Pg.56]    [Pg.57]    [Pg.57]    [Pg.97]    [Pg.180]    [Pg.199]    [Pg.199]    [Pg.200]    [Pg.204]    [Pg.401]    [Pg.406]    [Pg.1908]    [Pg.1910]    [Pg.180]    [Pg.181]    [Pg.712]    [Pg.712]    [Pg.5]    [Pg.6]    [Pg.71]    [Pg.104]    [Pg.193]   
See also in sourсe #XX -- [ Pg.803 ]

See also in sourсe #XX -- [ Pg.803 ]

See also in sourсe #XX -- [ Pg.128 , Pg.130 ]

See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.803 ]

See also in sourсe #XX -- [ Pg.705 , Pg.706 ]

See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.747 ]

See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.785 , Pg.786 ]

See also in sourсe #XX -- [ Pg.165 , Pg.676 ]

See also in sourсe #XX -- [ Pg.744 , Pg.745 ]

See also in sourсe #XX -- [ Pg.705 , Pg.706 , Pg.706 ]




SEARCH



© 2024 chempedia.info