Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene couplings

Stokbro K, Taylor J, Brandbyge M, Mozos JL, Ordejon P (2003) Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(l-l-l) surfaces via thiol and thiolate bonds. Comput Mater Sci 27(1/2) 151-160... [Pg.33]

Pertinent data concerning the photoreactions are summarized in Table 17. Quantum yields are for loss of starting ketone and are relative to irradiation of valerophenone in t-butyl alcohol. Both the values of d> (rel) and t/c from the micelles resemble more closely those from the t-butyl alcohol solution than from the nonpolar benzene. Coupled with the data of Winkle et al. [306], these results indicate that the alkanophenones reside primarily within the hydrophobic interiors of the micelles, but that the BRs migrate to water-enriched environments at or near the nebulous micellar surfaces. As such, even the template effect on the BRs is nonselective and probably allows all of the conformational changes which occur in a polar isotropic environment. [Pg.207]

Proton CDC13 DMSO Aceton Benzene Couplings in Hz (partners)... [Pg.391]

Benzene is a simple hydrocarbon with a unique structure of carbon-carbon bonds of equal length and strength. Overlap and delocalization of the x-electrons in benzene, coupled with its cyclic nature and continuous array of sp atoms, leads to special stability called aromaticity, and benzene is an aromatic molecule. A molecule is aromatic if it is cyclic, has a continuous and... [Pg.1028]

Theoretical Study of the Nonlinear Conductance of Di-thiol Benzene Coupled to Au(lll) Surfaces via Thiol and Thiolate Bonds. [Pg.275]

A novel phenol-benzene coupling reaction,giving rise to 2- and 4-hydroxy-biphenyls, (249) and (250), occurs in the acid-catalysed reaction of JV-aryl-hydroxylamines (251) with benzene (Scheme 37). [Pg.120]

Poly(/ -phenylene) has been synthesized by various procedures, such as oxidative cationic polymerization of benzene with Lewis acid-oxidant systems, electrolytic polymerization of benzene, coupling of aromatic halogen compounds, and condensation of aromatic nuclei with organometallic reagents, such as aryl Grignard reagents or aryllithium compounds [56]. [Pg.122]

The most important reaction of the diazonium salts is the condensation with phenols or aromatic amines to form the intensely coloured azo compounds. The phenol or amine is called the secondary component, and the process of coupling with a diazonium salt is the basis of manufacture of all the azo dyestuffs. The entering azo group goes into the p-position of the benzene ring if this is free, otherwise it takes up the o-position, e.g. diazotized aniline coupled with phenol gives benzeneazophenol. When only half a molecular proportion of nitrous acid is used in the diazotization of an aromatic amine a diazo-amino compound is formed. [Pg.133]

The vibronic coupling model has been applied to a number of molecular systems, and used to evaluate the behavior of wavepackets over coupled surfaces [191]. Recent examples are the radical cation of allene [192,193], and benzene [194] (for further examples see references cited therein). It has also been used to explain the lack of structure in the S2 band of the pyrazine absoiption spectrum [109,173,174,195], and recently to study the photoisomerization of retina] [196],... [Pg.288]

T orbital for benzene obtained from spin-coupled valence bond theory. (Figure redrawn from Gerratt ], D L oer, P B Karadakov and M Raimondi 1997. Modem valence bond theory. Chemical Society Reviews 87 100.) figure also shows the two Kekule and three Dewar benzene forms which contribute to the overall wavefunction Kekuleform contributes approximately 40.5% and each Dewar form approximately 6.4%. [Pg.146]

The most noteworthy reaction of azo-compounds is their behaviour on reduction. Prolonged reduction first saturates the azo group, giving the hydrazo derivative (C NH-NH C), and then breaks the NH NH linkage, with the formation of two primary amine molecules. If method (1) has been employed to prepare the azo-compound, these two primary amines will therefore be respectively (a) the original amine from which the diazonium salt was prepared, and (6) the amino derivative of the amine or phenol with which the diazonium salt was coupled. For example, amino-azobenzene on complete reduction gives one equivalent of aniline, and one of p-phenylene diamine, NHaCeH NH benzene-azo-2-naphthoI similarly gives one equivalent of aniline and one of... [Pg.210]

Acetone in conjunction with benzene as a solvent is widely employed. With cyclohexanone as the hydrogen acceptor, coupled with toluene or xylene as solvent, the use of higher reaction temperatures is possible and consequently the reaction time is considerably reduced furthermore, the excess of cyclohexanone can be easily separated from the reaction product by steam distillation. At least 0 25 mol of alkoxide per mol of alcohol is used however, since an excess of alkoxide has no detrimental effect 1 to 3 mols of aluminium alkoxide is recommended, particularly as water, either present in the reagents or formed during secondary reactions, will remove an equivalent quantity of the reagent. In the oxidation of steroids 50-200 mols of acetone or 10-20 mols of cyclohexanone are generally employed. [Pg.886]

The soiution is aliowed to cool and the crystals of the P2P-bisulfite addition compound are then separated by vacuum filtration, washed with a little clean dH20 then washed with a couple hundred mLs of ether, DCM or benzene. The filter cake of MD-P2P-bisulfate is processed by scraping the crystals into a flask and then 300mL of either 20% sodium carbonate solution or 10% HCi soiution are added (HCI works best). The soiution is stirred for another 30 minutes during which time the MD-P2P-bisulfite complex will be busted up and the P2P will return to its happy oil form. The P2P is then taken up with ether, dried and removed of the solvent to give pure MD-P2P. Whaddya think of that ... [Pg.58]

Reaction that can be carried out by the oxidative coupling of radicals may also be initiated by irradiation with UV light. This procedure is especially useful if the educt contains oleflnic double bonds since they are vulnerable to the oxidants used in the usual phenol coupling reactions. Photochemically excited benzene derivatives may even attack ester carbon atoms which is generally not observed with phenol radicals (I. Ninoraiya, 1973 N.C. Yang, 1966). [Pg.295]

The oxidative homocoupling of benzene with Pd(OAc)2, generated in situ from PdCl2 and. AcONa, affords biphenyl in 81% yield. In the absence of AcONa, no reaction took place. Pd(OAc)2 itself is a good reagent for the coupling[324-326]. The scope of the reaction has been studied[327,328]. [Pg.74]

The oxidative coupling of thiophene, furan[338] and pyrrole[339,340] is also possible. The following order of reactivity was observed in the coupling of substituted furans[338] R = H > Me > CHO > CO Me > CH(OAc)i > CO2H. The cross-coupling of furans and thiophenes with arene is possible, and 4-phenylfurfural (397) is the main product of the cross-coupling of furfural and benzene[341]. [Pg.75]

Monosubstitution of acetylene itself is not easy. Therefore, trimethylsilyl-acetylene (297)[ 202-206] is used as a protected acetylene. The coupling reaction of trimethylsilylacetylene (297) proceeds most efficiently in piperidine as a solvent[207]. After the coupling, the silyl group is removed by treatment with fluoride anion. Hexabromobenzene undergoes complete hexasubstitution with trimethylsilylacetylene to form hexaethynylbenzene (298) after desilylation in total yield of 28% for the six reactions[208,209]. The product was converted into tris(benzocyclobutadieno)benzene (299). Similarly, hexabutadiynylben-zene was prepared[210j. [Pg.170]

The benzene derivative 409 is synthesized by the Pd-catalyzed reaction of the haloenyne 407 with alkynes. The intramolecular insertion of the internal alkyne, followed by the intermolecular coupling of the terminal alkyne using Pd(OAc)2, Ph3P, and Cul, affords the dienyne system 408, which cyclizes to the aromatic ring 409[281]. A similar cyclization of 410 with the terminal alkyne 411 to form benzene derivatives 412 and 413 without using Cul is explained by the successive intermolecular and intramolecuar insertions of the two triple bonds and the double bond[282]. The angularly bisannulated benzene derivative 415 is formed in one step by a totally intramolecular version of polycycli-zation of bromoenediyne 414[283,284],... [Pg.184]

Diazo coupling involves the N exocyclic atom of the diazonium salt, which acts as an electrophilic center. The diazonium salts of thiazoles couple with a-naphthol (605). 2-nitroresorcinol (606), pyrocatechol (607-609), 2.6-dihydroxy 4-methyl-5-cyanopyridine (610). and other heteroaromatic compounds (404. 611) (Scheme 188). The rates of coupling between 2-diazothicizolium salts and 2-naphthol-3.6-disulfonic acid were measured spectrophotometrically and found to be slower than that of 2-diazopyridinium salts but faster than that of benzene diazonium salts (561 i. The bis-diazonium salt of bis(2-amino-4-methylthiazole) couples with /3-naphthol to give 333 (Scheme 189) (612). The products obtained from the diazo coupling are usuallv highly colored (234. 338. 339. 613-616). [Pg.112]

Two important widely used sulfonic acids are known as TwitcheU s reagents, or as in Russia, the Petrov catalysts. These reagents are based on benzene or naphthalene ( ) and (12), [3055-92-3] and [82415-39-2] respectively. The materials are typically made by the coupling of an unsaturated fatty acid with benzene or naphthalene in the presence of concentrated sulfuric acid (128). These sulfonic acids have been used extensively in the hydrolysis of fats and oils, such as beef tallow (129), coconut oil (130,131), fatty methyl esters (132), and various other fats and oils (133—135). TwitcheU reagents have also found use as acidic esterification catalysts (136) and dispersing agents (137). [Pg.103]

Nuclear Magnetic Resonance Spectroscopy. Nmr is a most valuable technique for stmeture determination in thiophene chemistry, especially because spectral interpretation is much easier in the thiophene series compared to benzene derivatives. Chemical shifts in proton nmr are well documented for thiophene (CDCl ), 6 = 7.12, 7.34, 7.34, and 7.12 ppm. Coupling constants occur in well-defined ranges J2-3 = 4.9-5.8 ... [Pg.19]

Generally, phenols (as the phenolate anion) couple more readily than amines, and members of the naphthalene series more readily than the members of the benzene series. [Pg.428]

Commercial Disperse Azo Dyes. The first proposal to use insoluble dyes in suspension in an aqueous foam bath, ie, disperse dyes, to dye cellulose acetate was in 1921 (60). Commercialization of disperse dyes began in 1924 with the introduction of the Duranol dyes by British Dyestuffs Corporation (61) and the SRA dyes by British Celanese Company (62). In contrast to the acid monoazo dyes, derivatives of benzene rather than of naphthalene are of the greatest importance as coupling components. Among these components mono- and dialkylariifines (especially A/-P-hydroxyethyl-and A/-(3-acetoxyethylanifine derivatives) are widely used couplers. Nitrodiazobenzenes are widely used as diazo components. A typical example is CeUiton Scarlet B [2872-52-8] (91) (Cl Disperse Red 1 Cl 11110). [Pg.447]


See other pages where Benzene couplings is mentioned: [Pg.76]    [Pg.158]    [Pg.240]    [Pg.523]    [Pg.345]    [Pg.693]    [Pg.436]    [Pg.76]    [Pg.158]    [Pg.240]    [Pg.523]    [Pg.345]    [Pg.693]    [Pg.436]    [Pg.35]    [Pg.588]    [Pg.138]    [Pg.146]    [Pg.27]    [Pg.59]    [Pg.138]    [Pg.226]    [Pg.486]    [Pg.433]    [Pg.328]    [Pg.454]    [Pg.485]    [Pg.296]   
See also in sourсe #XX -- [ Pg.568 , Pg.569 , Pg.570 , Pg.571 , Pg.572 , Pg.573 ]




SEARCH



Benzene HH coupling constants

Benzene derivatives coupling constants

Benzene derivatives oxidative coupling, arenes

Benzene derivatives, coupling with

Benzene hyperfine coupling constants

Benzene intramolecular coupling

Benzene spin-coupled valence bond theory

Benzene, 1,4-dinitroreduction reductive coupling

Benzene, absorption spectrum vibronic coupling

Benzene, trichlorodialkylation coupling reactions with primary alkyl Grignard

Benzenes coupling with ethyl acrylate

Coupling hydroxy iodo] benzene

Coupling in benzene derivatives

Cross-coupling, palladium-catalyzed, benzene

Oxidative coupling of benzenes

Vibronic coupling benzene

Vibronic coupling constants benzene

© 2024 chempedia.info