Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Batteries chemical reaction

Before the widespread availability of instrumental methods the major approach to structure determination relied on a battery of chemical reactions and tests The response of an unknown substance to various reagents and procedures provided a body of data from which the structure could be deduced Some of these procedures are still used to supple ment the information obtained by instrumental methods To better understand the scope and limitations of these tests a brief survey of the chemical reactions of carbohydrates is m order In many cases these reactions are simply applications of chemistry you have already learned Certain of the transformations however are unique to carbohydrates... [Pg.1052]

The lead storage battery, the largest single user of lead and its compounds, is made possible by the high degree of reversibiUty, both chemical and physical, in the fundamental chemical reaction... [Pg.67]

Nitric acid dissolves silver at all concentrations. This is the principal chemical reaction for the dissolution of silver into the soluble nitrate, which is the chemical intermediate for the production of electroplated ware, catalysts, battery plates, pharmaceuticals, mirrors, and silver haUdes for photographic materials. Nitric acid removes silver from the residual pellet in the gold fire assay. [Pg.83]

In bulk chemical reactions, an oxidizer (electron acceptor) and fuel (electron donor) react to form products resulting in direct electron transfer and the release or absorption of energy as heat. By special arrangements of reactants in devices called batteries, it is possible to control the rate of reaction and to accomplish the direct release of chemical energy in the form of electricity on demand without intermediate processes. [Pg.505]

Jictive mass is the material which generates electrical current by means of a chemical reaction within the battery. [Pg.506]

Batteries are miniatuie chemical leactois that convert chemical energy into electrical energy on demand. The thermodynamics of battery systems foUow direcdy from that for bulk chemical reactions (10). For the general reaction... [Pg.506]

Activation Processes. To be useful ia battery appHcations reactions must occur at a reasonable rate. The rate or abiUty of battery electrodes to produce current is determiaed by the kinetic processes of electrode operations, not by thermodynamics, which describes the characteristics of reactions at equihbrium when the forward and reverse reaction rates are equal. Electrochemical reaction kinetics (31—35) foUow the same general considerations as those of bulk chemical reactions. Two differences are a potential drop that exists between the electrode and the solution because of the electrical double layer at the electrode iaterface and the reaction that occurs at iaterfaces that are two-dimensional rather than ia the three-dimensional bulk. [Pg.511]

The detailed mechanism of battery electrode reactions often involves a series of chemical and electrochemical or charge-transfer steps. Electrode reaction sequences can also include diffusion steps on the electrode surface. Because of the high activation energy required to transfer two electrons at one time, the charge-transfer reactions are beheved to occur by a series of one electron-transfer steps illustrated by the reactions of the 2inc electrode in strongly alkaline medium (41). [Pg.513]

The chemical reaction of the lead-acid battery was explained as early as 1882 (11). The double sulfate theory has been confirmed by a number of methods (12—14) as the only reaction consistent with the thermodynamics of the system. The thermodynamics of the lead —acid battery has been reviewed in great detail (15). [Pg.572]

Cd(OH)2 is much more basic than Zn(OH)2 and is soluble ia 5 NaOH at 1.3 g/L as the anionic complex tetrahydroxocadmate [26214-93-7] Cd(OH) 4. Technical-grade Cd(OH)2 sold for 74/kg ia 1991 and its most important utihty is as the active anode ia rechargeable Ni—Cd and Ag—Cd storage batteries. The chemical reaction responsible for the charge—discharge of the batteries is (35) ... [Pg.395]

In the sodium—sulfur storage battery above 300°C, the overall chemical reaction occurs between molten sodium metal and sulfur to form sodium polysulfide. The cell voltage is related to the activity of the sodium ( Aia) sulfide relative to its activity in the metal. [Pg.355]

Fuel cells have attracted considerable interest because of their potential for efficient conversion of the energy (AG) from a chemical reaction to electrical energy (AE). This efficiency is achieved by directly converting chemical energy to electricity. Conventional systems burn fuel in an engine and convert the resulting mechanical output to electrical power. Potential applications include stationary multi-megawatt power plants, battery replacements for personal electronics, and even fuel-cell-powered unmanned autonomous vehicles (UAVs). [Pg.503]

Electrochemical cells are familiar—a flashlight operates on current drawn from electrochemical cells called dry cells, and automobiles are started with the aid of a battery, a set of electrochemical cells in tandem. The last time you changed the dry cells in a flashlight because the old ones were dead, did you wonder what had happened inside those cells Why does electric current flow from a new dry cell but not from one that has been used many hours We shall see that this is an important question in chemistry. By studying the chemical reactions that occur in an electrochemical cell we discover a basis for predicting whether equilibrium in a chemical reaction fa-... [Pg.199]

In the lead-acid battery, the reactions at both electrodes include the dissolved state, which means that the reacting species are dissolved in the course of the reaction. The new chemical compounds formed during the reaction are precipitated again as solid matter. This explains the completely different appearance of the material in the charged and discharged states. [Pg.164]

Figure 9.3 The lead storage battery. The key to obtaining electrical energy from a redox chemical reaction is to physically separate the two half-cell reactions so that electrons are transferred from the anode through an external circuit to the cathode. In the process, electrical work is accomplished. Figure 9.3 The lead storage battery. The key to obtaining electrical energy from a redox chemical reaction is to physically separate the two half-cell reactions so that electrons are transferred from the anode through an external circuit to the cathode. In the process, electrical work is accomplished.
The problem was solved by Francis Bacon, a British scientist and engineer, who developed an idea proposed by Sir William Grove in 18.39. A fuel cell generates electricity directly from a chemical reaction, as in a battery, but uses reactants that are supplied continuously, as in an engine. A fuel cell that runs on hydrogen and oxygen is currently installed on the space shuttle (see Fig. L.l). An advantage of this fuel cell is that the only product of the cell reaction, water, can be used for life support. [Pg.639]

Electron-transfer reactions occur all around us. Objects made of iron become coated with mst when they are exposed to moist air. Animals obtain energy from the reaction of carbohydrates with oxygen to form carbon dioxide and water. Turning on a flashlight generates a current of electricity from a chemical reaction in the batteries. In an aluminum refinery, huge quantities of electricity drive the conversion of aluminum oxide into aluminum metal. These different chemical processes share one common feature Each is an oxidation-reduction reaction, commonly called a redox reaction, in which electrons are transferred from one chemical species to another. [Pg.1351]

Redox reactions can proceed by direct transfer of electrons between chemical species. Examples include the rusting of iron and the metabolic breakdown of carbohydrates. Redox processes also can take place by indirect electron transfer from one chemical species to another via an electrical circuit. When a chemical reaction is coupled with electron flow through a circuit, the process is electrochemical. Flashlight batteries and aluminum smelters involve electrochemical processes. [Pg.1351]

In a galvanic cell, a spontaneous chemical reaction generates an electrical current. It is also possible to use an electrical current to drive a nonspontaneous chemical reaction. The recharging of a dead battery uses an external electrical current to drive the batteiy reaction in the reverse, or uphill, direction. [Pg.1408]

Reactions in batteries are chemical reactions between an oxidizer and a reducer. In reactions of this type, the reducer being oxidized releases electrons while the oxidizer being reduced accepts electrons. An example of such a redox reaction is the reaction between silver oxide (the oxidizer) and metallic zinc (the reducer) ... [Pg.344]

The numerous existing battery types vary in their size, stractural features, and nature of the chemical reactions. They vary accordingly in their performance and parameters. This variety reflects the diverse conditions nnder which cells operate, each field of application imposing its specific reqnirements. [Pg.349]

Small particles of metals in solution often behave like electrodes although they are not connected to a battery which determines their potential. However, when a chemical reaction occurs in the solution of such particles intermediate free radicals may transfer electrons to them. The particles are thus charged chemically and are able to act as a metal electrode on cathodic potential. Electron transfer reactions become possible at these micro-electrodes which cannot be brought about by the radicals in the absence of the colloidal catalyst. [Pg.114]

An automobile battery is a type called a lead-acid storage battery. Lead-acid storage batteries rely on the chemical reaction between lead, lead dioxide, and sulfuric acid to operate. In a... [Pg.59]


See other pages where Batteries chemical reaction is mentioned: [Pg.284]    [Pg.265]    [Pg.284]    [Pg.265]    [Pg.20]    [Pg.392]    [Pg.515]    [Pg.542]    [Pg.395]    [Pg.122]    [Pg.123]    [Pg.1101]    [Pg.452]    [Pg.329]    [Pg.338]    [Pg.610]    [Pg.773]    [Pg.111]    [Pg.325]    [Pg.343]    [Pg.694]    [Pg.659]    [Pg.78]    [Pg.59]    [Pg.377]    [Pg.1304]    [Pg.1304]    [Pg.1309]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 ]




SEARCH



Batteries Producing Electricity Through Chemical Reactions

Battery reactions

Chemical Current-Producing Reactions in Batteries

Lithium batteries chemical reactions

© 2024 chempedia.info