Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Batch boiling

V is the removal rate of vapor leaving the beaker (mol/s), and X and y are the liquid and vapor molar fractions, respectively, in vector form. [Pg.16]

One may assume that y is in equilibrium with x, but this will be discussed in Section 2.4. [Pg.16]

The molar fractions are dehned using the following vector notation (as indicated in bold)  [Pg.16]

Furthermore, since the entries in these compositional vectors are mole fractions, it is then a necessary requirement that [Pg.16]


In this chapter, the derivation of RCMs from simple batch boiling, as well as the fundamental properties behind RCMs, are discussed. Thereafter, the application of RCMs to continuous processes is explored. However, as will be shown, this application has limitations and these will also be addressed. [Pg.15]

Rather than relying on an intuitive understanding of the batch boiling experiment shown in Figure 2.1, let us consider a more mathematical description of the process. In order to do this, we start with an unsteady state component mass balance (in vector form) around the beaker, resulting in... [Pg.19]

It is also customary to show the positive direction of movement of the residue curves on the maps [3]. This direction corresponds to the way the tr ectory would be generated during batch boiling, and is therefore related to forward integration towards positive infinity. Thus, the profiles move from the low-boiling component to the high-boiling component, as indicated. [Pg.23]

If one were to conduct batch boiling with an initial charge composition located in region 1, the initial vapors produced would be rich in acetone, while the liquid would become richer in benzene. Operation in region 2 would result in a benzene-rich liquid as well however, the vapor produced will be more concentrated in chloroform. Furthermore, it should be noted that the nature of the profiles, and hence the distillation regions formed, are dependent on the system and type of azeotrope(s) present (either minimum or maximum boiling). [Pg.24]

The lack of success of most continuous wort boiling plants may possibly be due to difficulties concerned with inadequate release of undesirable volatiles, leading to abnormal beer flavours and aromas. Fundamentally, this is expressed by the Rayleigh equation which for batch boiling is... [Pg.133]

The normal boiling points of the materials are given in Table 4.6. Synthesize a continuous reaction, separation, and recycle system for the process, bearing in mind that the process will later become batch. [Pg.118]

Continuous deaeration occurs when the viscose is warmed and pumped into thin films over cones in a large vacuum tank. The combination of the thinness of the Hquid film and the dismption caused by the boiling of volatile components allows the air to get out quickly. Loss of water and CS2 lower the gamma value and raise the cellulose concentration of the viscose slightly. Older systems use batch deaeration where the air bubbles have to rise through several feet of viscose before they are Hberated. [Pg.347]

Bromine Trifluoride. Bromine trifluoride is produced commercially by the reaction of fluorine with bromine ia a continuous gas-phase process where the ratio of fluorine to bromine is maintained close to 3 1. It is also produced ia a Hquid-phase batch reaction where fluorine is added to Hquid bromine at a temperature below the boiling poiat of bromine trifluoride. [Pg.186]

Direct hydrohquefaction of biomass or wastes can be achieved by direct hydrogenation of wood chips on treatment at 10,132 kPa and 340 to 350°C with water and Raney nickel catalyst (45). The wood is completely converted to an oily Hquid, methane, and other hydrocarbon gases. Batch reaction times of 4 hours give oil yields of about 35 wt % of the feed the oil contains about 12 wt % oxygen and has a heating value of about 37.2 MJ /kg (16,000 Btu/lb). Distillation yields a significant fraction that boils in the same range as diesel fuel and is completely miscible with it. [Pg.26]

Most aroma chemicals are relatively high boiling (80—160°C at 0.4 kPa = 3 mm Hg) Hquids and therefore are subject to purification by vacuum distillation. Because small amounts of decomposition may lead to unacceptable odor contamination, thermal stabiUty of products and by-products is an issue. Important advances have been made in distillation techniques and equipment to allow routine production of 5000 kg or larger batches of various products. In order to make optimal use of equipment and to standardize conditions for distillations and reactions, computer control has been instituted. This is particulady well suited to the multipurpose batch operations encountered in most aroma chemical plants. In some instances, on-line analytical capabihty is being developed to work in conjunction with computer controls. [Pg.85]

Manufacture. Phosphoms sulfides are manufactured commercially by direct reaction of the elements. Elemental phosphoms and sulfur are measured into a reaction vessel containing a heel of molten phosphoms sulfide. The reaction can be batch or continuous. The ratio of phosphoms to sulfur in the feed determines which phosphoms sulfur compound (Table 5) is formed. The reaction temperature can be the boiling point or lower. For the boiling reactor (27,28), the phosphoms sulfide product is first purified by distillation and then condensed to a Hquid. Alternatively, the Hquid product can be formed directly in a nondistiUed process (29—31), which may involve a subsequent distillation step (30), and in which the phosphoms is often cleaned up prior to use (30—32). For either process, the Hquid phosphoms sulfide product is soHdified, and usually sized to form a commercial material. [Pg.364]

Direct Saponification. Direct saponification of fats and oils is the traditional process utilized for the manufacturing of soap. Commercially this is done through either a kettle boiling batch process or a continuous process. [Pg.153]

Sulfurization of unsaturated compounds and meicaptans is normally carried out at atmospheric pressure, in a mild or stainless steel, batch-reaction vessel equipped with an overhead condenser, nitrogen atmosphere, an agitator, heating media capable of 120—215°C temperatures and a scmbber (typically caustic bleach or diethanolamine) capable of handling hydrogen sulfide. If the reaction iavolves the use of H2S as a reactant or the olefin or mercaptan is a low boiling material, a stainless steel pressurized vessel is recommended. [Pg.207]

Distillation. Distillation separates volatile components from a waste stream by taking advantage of differences in vapor pressures or boiling points among volatile fractions and water. There are two general types of distillation, batch or differential distillation and continuous fractional or multistage distillation (see also Distillation). [Pg.161]

Batch distillation (see Fig. 3) typically is used for small amounts of solvent wastes that are concentrated and consist of very volatile components that are easily separated from the nonvolatile fraction. Batch distillation is amenable to small quantities of spent solvents which allows these wastes to be recovered onsite. With batch distillation, the waste is placed in the unit and volatile components are vaporized by applying heat through a steam jacket or boiler. The vapor stream is collected overhead, cooled, and condensed. As the waste s more volatile, high vapor pressure components are driven off, the boiling point temperature of the remaining material increases. Less volatile components begin to vaporize and once their concentration in the overhead vapors becomes excessive, the batch process is terrninated. Alternatively, the process can be terrninated when the boiling point temperature reaches a certain level. The residual materials that are not vaporized are called still bottoms. [Pg.161]

There are essentially four steps or unit operations in the manufacture of fatty acids from natural fats and oils (/) batch alkaline hydrolysis or continuous high pressure hydrolysis (2) separation of the fatty acids usually by a continuous solvent crystallisation process or by the hydrophilisation process (J) hydrogenation, which converts unsaturated fatty acids to saturated fatty acids and (4) distillation, which separates components by their boiling points or vapor pressures. A good review of the production of fatty acids has been given (1). [Pg.89]


See other pages where Batch boiling is mentioned: [Pg.116]    [Pg.16]    [Pg.16]    [Pg.22]    [Pg.103]    [Pg.305]    [Pg.315]    [Pg.531]    [Pg.116]    [Pg.16]    [Pg.16]    [Pg.22]    [Pg.103]    [Pg.305]    [Pg.315]    [Pg.531]    [Pg.179]    [Pg.102]    [Pg.543]    [Pg.14]    [Pg.135]    [Pg.119]    [Pg.182]    [Pg.305]    [Pg.347]    [Pg.16]    [Pg.484]    [Pg.354]    [Pg.233]    [Pg.307]    [Pg.39]    [Pg.260]    [Pg.39]    [Pg.153]    [Pg.28]    [Pg.339]    [Pg.267]    [Pg.388]    [Pg.480]    [Pg.155]   


SEARCH



© 2024 chempedia.info