Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bastnasite

It is recovered commercially from monazite sand, which contains about 3%, and from bastnasite, which contains about 0.2%. Wohler obtained the impure element in 1828 by reduction of the anhydrous chloride with potassium. The metal is now produced commercially by reduction of the fluoride with calcium metal. It can also be prepared by other techniques. [Pg.73]

Lanthanum is found in rare-earth minerals such as cerite, monazite, allanite, and bastnasite. Monazite and bastnasite are principal ores in which lanthanum occurs in percentages up to 25 percent and 38 percent respectively. Misch metal, used in making lighter flints, contains about 25 percent lanthanum. [Pg.128]

Cerium is the most abundant so-called rare-earths metal. It is found in a number of minerals including ahanite (also known as orthite), monazite, bastnasite, cerhe, and samarskite. Monazite and bastnasite are presently the two more important sources of cerium. [Pg.172]

Large deposits of monazite (found on the beaches of Travancore, India and in river sands in Brazil), ahanite (in the western United States), and bastnasite (in Southern California) will supply cerium, thorium, and the other rare-earth metals for many years to come. [Pg.172]

As with other rare-earth metals, except for lanthanum, europium ignites in air at about 150 to I8O0C. Europium is about as hard as lead and is quite ductile. It is the most reactive of the rare-earth metals, quickly oxidizing in air. It resembles calcium in its reaction with water. Bastnasite and monazite are the principal ores containing europium. [Pg.177]

The element occurs along with other rare-earth elements in a variety of minerals. Monazite and bastnasite are the two principal commercial sources of the rare-earth metals. It was prepared in relatively pure form in 1931. [Pg.179]

Gr. neos, new, and didymos, twin) In 1841, Mosander, extracted from cerite a new rose-colored oxide, which he believed contained a new element. He named the element didymium, as it was an inseparable twin brother of lanthanum. In 1885 von Welsbach separated didymium into two new elemental components, neodymia and praseodymia, by repeated fractionation of ammonium didymium nitrate. While the free metal is in misch metal, long known and used as a pyrophoric alloy for light flints, the element was not isolated in relatively pure form until 1925. Neodymium is present in misch metal to the extent of about 18%. It is present in the minerals monazite and bastnasite, which are principal sources of rare-earth metals. [Pg.181]

Gadolinium is found in several other minerals, including monazite and bastnasite, both of which are commercially important. With the development of ion-exchange and solvent extraction techniques, the availability and prices of gadolinium and the other rare-earth metals have greatly improved. The metal can be prepared by the reduction of the anhydrous fluoride with metallic calcium. [Pg.187]

Bastnasite [12172-82-6] Bastnasite [68909-13-7] Batch crystallization Batch dyeing paper Batch esterification BATCHFRAC Batch furnaces Batch injection analy ... [Pg.92]

Plutonium occurs in natural ores in such small amounts that separation is impractical. The atomic ratio of plutonium to uranium in uranium ores is less than 1 10 however, traces of primordial plutonium-244 have been isolated from the mineral bastnasite (16). One sample contained 1 x 10 g/g ore, corresponding to a plutonium-244 [14119-34-7] Pu, terrestrial abundance of 7 x 10 to 2.8 x 10 g/g of mineral and to <10g of primordial Pu on earth. The content of plutonium-239 [15117 8-3], Pu, in uranium minerals is given in Table 2. [Pg.192]

Whereas certain rocks of igneous origin formed by melting and recrystallization can include minerals enriched in the lanthanides (4), cerium is usually present as a trace element rather than as an essential component. Only a few minerals in which cerium is an essential stmcture-defining component occur in economically significant deposits. Two minerals supply the world s cerium, bastnasite [68909-13-7] LnFCO., and monazite [1306-41 -8] (Ln,Th)PO. ... [Pg.365]

Bastnasite has been identified in various locations on several continents. The largest recognized deposit occurs mixed with monazite and iron ores in a complex mineralization at Baiyunebo in Inner MongoHa, China. The mineral is obtained as a by-product of the iron ore mining. The other commercially viable bastnasite source is the Mountain Pass, California deposit where the average Ln oxide content of the ore is ca 9%. This U.S. deposit is the only resource in the world that is minded solely for its content of cerium and other lanthanides. [Pg.365]

An alternative process for opening bastnasite is used ia Chiaa high temperature roastiag with sulfuric acid followed by an aqueous leach produces a solution containing the Ln elements. Ln is then precipitated by addition of sodium chloride as a mixed sulfate. Controlled precipitation of hydroxide can remove impurities and the Ln content is eventually taken up ia HCl. The initial cerium-containing product, oace the heavy metals Sm and beyond have been removed, is a light lanthanide (La, Ce, Pr, and Nd) rare-earth chloride. [Pg.366]

Mischmetal. Mischmetal [62379-61-7] contains, in metallic form, the mixed light lanthanides in the same or slightly modified ratio as occurs in the resource minerals. It is produced by the electrolysis of fused mixed lanthanide chloride prepared from either bastnasite or mona2ite. Although the precise composition of the resulting metal depends on the composition of chloride used, the cerium content of most grades is always close to 50 wt %. [Pg.368]

An alternative commercial form of a metallic mixed lanthanide-containing material is rare-earth siUcide [68476-89-1/, produced in a submerged electric-arc furnace by the direct reduction of ore concentrate, bastnasite, iron ore, and quart2. The resulting alloy is approximately 1/3 mischmetal, 1/3 sihcon, and 1/3 iron. In addition there are some ferro-alloys, such as magnesium—ferrosilicons, derived from cerium concentrate, that contain a few percent of cerium. The consumption of metallic cerium is overwhelmingly in the mixed lanthanide form in ferrous metallurgy. [Pg.368]

The cerium concentrate derived from bastnasite is an excellent polish base, and the oxide derived direcdy from the natural ratio rare-earth chloride, as long as the cerium oxide content is near or above 50 wt %, provides an adequate glass poHsh. The polishing activity of the latter is better than the Ce02 Ln0 ratio suggests. Materials prepared prior to any Ln purification steps are sources for the lowest cost poHshes available used to treat TV face plates, mirrors, and the like. For precision optical polishing the higher purity materials are preferred. [Pg.370]

Cerium oxide acts as a catalytic oxidizer in a spinel-based additive (38) that aids SO2 to SO conversion and promotes the required sulfate formation. Bastnasite itself is the most economical source of cerium and can be used directly at 1% as the capture additive (39). [Pg.371]

Bayan Obo, China Bastnasite, monazite, magnetite, pyrochlore... [Pg.45]

Rare Earths are produced primarily from three ores, monazite, xenotime, and bastnasite. Monazite is a phosphate mineral of essentially the cerium subgroup metals and thorium -(light rare Earths, Th) P04. The composition of monazite is reasonably constant throughout the world, with almost 50% of its rare Earth content as cerium and most of the remaining 50% as the other members of the cerium subgroup. Xenotime, like monazite, is a rare Earth orthophosphate but contains up to 63% yttrium oxide and also a markedly higher propor-... [Pg.69]

Table 1.17 Analysis of bastnasite, monazite, and xenotime from different locations3 (Percent of total rare Earth oxide). Table 1.17 Analysis of bastnasite, monazite, and xenotime from different locations3 (Percent of total rare Earth oxide).
Rare Earth Bastnasite (REFC03 Monazite (RE,Y,ThPOJ Xenotime (YREPOJ... [Pg.70]

Monazite Bastnasite Scheelite Magnetite Ferberite Wolframite Gold... [Pg.182]

Figure 2.35 (A) Flowsheet for heavy mineral processing in Thailand. (B) Flowsheet for processing bastnasite from mountain pass, California. Figure 2.35 (A) Flowsheet for heavy mineral processing in Thailand. (B) Flowsheet for processing bastnasite from mountain pass, California.
In addition to pure oxides, oxidic minerals and ores also can be converted to metal chlorides. Examples include minerals such as zircon, bastnasite, monazite, ilmenite, etc. [Pg.402]

The ores from which rare-earth elements are extracted are monazite, bastnasite, and oxides of yttrium and related fluorocarbonate minerals. These ores are found in South Africa, Australia, South America, India, and in the United States in Cahfomia, Florida, and the Carolinas. Several of the rare-earth elements are also produced as fission by-products during the decay of the radioactive elements uranium and plutonium. The elements of the lanthanide series that have an even atomic number are much more abundant than are those of the series that have an odd atomic number. [Pg.277]

The main ore in which lanthanum is found is monazite sands, and it is also found in the mineral bastnasite. Monazite sands contain all of the rare-earth elements as well as some elements that are not rare-earths. Its ores are found in South Africa, Australia, Brazil, and India and in California, Florida, and the Carolinas in the United States... [Pg.278]

Cerium is the 25th most abundant element on Earth. It is also the most abundant rare-earth metal in the lanthanide series. Its major ores are monazite and bastnasite. Cerium is found in the Earth s crust in 46 ppm, which is about 0.0046% of the Earth s crust. Cerium is mixed with other elements in its ores, making it difflcult to find, isolate, and identify. Its existence was unknown until about 1803... [Pg.280]

Monazite sands contain most of the rare-earths. The sands of the beaches of Florida and parts of Cahfomia contain monazite. Monazite is also found in South Africa, India, and Brazil. Bastnasite is found in southern Cahfomia and New Mexico. [Pg.280]

Praseodymium is the 41st most abundant element on Earth and is found in the ores of mona-zite, cerite, bastnasite, and allanite along with other rare-earths. Praseodymium is also the stable isotope resulting from the process of fission of some other heavy elements, such as uranium. [Pg.282]

Praseodymium is mainly found in monazite sands and bastnasite ores. The monazite sands contain all of the rare-earths and are found in river sand in India and Brazil as well as in Florida beach sand. A large deposit of bastnasite exists in California. [Pg.282]

Although neodymium is the 28th most abundant element on Earth, it is third in abundance of all the rare-earths. It is found in monazite, bastnasite, and allanite ores, where it is removed by heating with sulfuric acid (H SO ). Its main ore is monazite sand, which is a mixture of Ce, La, Th, Nd, Y, and small amounts of other rare-earths. Some monazite sands are composed of over 50% rare-earths by weight. Like most rare-earths, neodymium can be separated from other rare-earths by the ion-exchange process. [Pg.284]

Europium is the 13th most abundant of all the rare-earths and the 55th most abundant element on Earth. More europium exists on Earth than all the gold and silver deposits. Like many other rare-earths, europium is found in deposits of monazite, bastnasite, cerite, and allanite ores located in the river sands of India and Brazil and in the beach sand of Florida. It has proven difficult to separate europium from other rare-earths. Today, the ion-exchange... [Pg.289]

Gadohnium is the 40th most abundant element on Earth and the sixth most abundant of the rare-earths found in the Earths crust (6.4 ppm). Like many other rare-earths, gadolinium is found in monazite river sand in India and Brazil and the beach sand of Florida as well as in bastnasite ores in southern California. Similar to other rare-earths, gadolinium is recovered from its minerals by the ion-exchange process. It is also produced by nuclear fission in atomic reactors designed to produce electricity. [Pg.291]

Dysprosium is the 43rd most abundant element on Earth and ranks ninth in abundance of the rare-earths found in the Earth s crust. It is a metallic element that is usually found as an oxide (disprosia). Like most rare-earths, it is found in the minerals monazite and allanite, which are extracted from river sands of India, Africa, South America, and Australia and the beaches of Florida. It is also found in the mineral bastnasite in California. [Pg.295]


See other pages where Bastnasite is mentioned: [Pg.185]    [Pg.191]    [Pg.92]    [Pg.212]    [Pg.192]    [Pg.419]    [Pg.365]    [Pg.366]    [Pg.366]    [Pg.44]    [Pg.45]    [Pg.70]    [Pg.70]    [Pg.220]    [Pg.88]    [Pg.281]   
See also in sourсe #XX -- [ Pg.69 ]

See also in sourсe #XX -- [ Pg.275 , Pg.280 , Pg.282 , Pg.284 , Pg.289 , Pg.291 , Pg.298 , Pg.300 ]

See also in sourсe #XX -- [ Pg.4 , Pg.8 , Pg.95 , Pg.137 , Pg.141 ]

See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.11 , Pg.12 , Pg.32 , Pg.46 ]

See also in sourсe #XX -- [ Pg.1111 ]

See also in sourсe #XX -- [ Pg.3 , Pg.3 ]

See also in sourсe #XX -- [ Pg.2 , Pg.9 ]

See also in sourсe #XX -- [ Pg.645 , Pg.747 ]

See also in sourсe #XX -- [ Pg.868 ]

See also in sourсe #XX -- [ Pg.744 , Pg.860 , Pg.861 ]

See also in sourсe #XX -- [ Pg.354 , Pg.366 ]

See also in sourсe #XX -- [ Pg.198 ]

See also in sourсe #XX -- [ Pg.750 ]

See also in sourсe #XX -- [ Pg.778 , Pg.1008 , Pg.1009 ]

See also in sourсe #XX -- [ Pg.203 , Pg.204 , Pg.252 ]




SEARCH



Bastnasite cerium

Bastnasite composition

Bastnasite dysprosium

Bastnasite europium

Bastnasite gadolinium

Bastnasite lanthanum

Bastnasite neodymium

Bastnasite production

Bastnasite samarium

Bastnasite treatment

Bastnasite yttrium

Minerals bastnasite

© 2024 chempedia.info