Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bases hexamethyldisilazide

Many organic syntheses requHe the use of stericaHy hindered and less nucleophilic bases than //-butyUithium. Lithium diisopropylamide (LDA) and lithium hexamethyldisilazide (LHS) are often used (140—142). Both compounds are soluble in a wide variety of aprotic solvents. Presence of a Lewis base, most commonly tetrahydrofuran, is requHed for LDA solubdity in hydrocarbons. A 30% solution of LHS can be prepared in hexane. Although these compounds may be prepared by reaction of the amine with //-butyUithium in the approprite medium just prior to use, they are also available commercially in hydrocarbon or mixed hydrocarbon—THF solvents as 1.0—2.0 M solutions. [Pg.229]

In the reaction of 1,3-dithiane oxide anions with iV-acylimidazoles the optimum procedure involved a sodium hexamethyldisilazide/butyllithium mixture as base [101]... [Pg.321]

Parts A and B of the procedure correspond to preparation of lithium tetramethylpiperidide, and its use in the in situ preparation and addition of dibromomethyllithium to the ester 1 producing tetrahedral intermediate 2. In Part C a mixture of lithium hexamethyldisilazide and lithium ethoxide is prepared for addition in Part D to the solution of 2. The silazide base serves to deprotonate the mono and dibromo ketones that are formed on initial warming of the reaction to -20°C, thus protecting them as the enolate anions 4 and 3. Addition of the sec-butyllithium in Part... [Pg.78]

When one of the reacting partners in the Wittig-Horner reaction, either the phosphine oxide or the carbonyl compound, has a double bond, the product is a diene. The Wittig-Horner reaction was utilized by Smith and coworkers in the total synthesis of milbemycin (equation 98)170. They found that when sodium hexamethyldisilazide was employed as a base, the desired E-diene selectivity is high (85%). Some examples from the literature where the Wittig-Horner reaction has been utilized for the construction of E-double bonds present in dienes and polyenes are given in Table 19171. [Pg.415]

Vedejs et al. developed a method for the iodination of oxazoles at C(4) via 2-lithiooxazoles by exploiting the aforementioned equilibrium between cyclic (5) and acyclic (6) valence bond tautomers of 2-lithiooxazole [4]. When 5-(p-tolyl)oxazole (8) was treated with lithium hexamethyldisilazide (LiHMDS) in THF followed by treatment with 1,2-diiodoethane as the electrophile, 2-iodooxazole 9 was obtained exclusively. On the other hand, when 50 volume% of DMPU was added prior to the addition of the base, 4-iodooxazole 10 was isolated as the predominant product (73%) with ca. 2% of 9 and ca. 5% of the 2,4-diiodooxazole derivative. [Pg.323]

Meyers lactams are widely used in synthesis of substituted synthons of interest and their functionalization is carried out under strong base conditions giving C-alkyl derivatives. Alkylation of bicyclic lactam 182 with electrophiles (alkyl, allyl, benzyl halides, chlorophosphonate), and a strong base (j-BuLi, LiHMDS, or KHMDS HMDS = hexamethyldisilazide) in THF at — 78 °C gave an endo-exo mixture of products where the major one is the rro/o-compound 183 in good yields. The ratios were determined by H NMR spectroscopy and are usually up to... [Pg.69]

Finn and co-workers [87], who treated aromatic aldehydes with a mixed titanium-phosphorus ylide formed from iPrOTiCl3, (Me2N)3P=CH2 and an excess of sodium hexamethyldisilazide as base (Scheme 2.52). Symmetrical allenes 167 were thereby obtained with moderate to good yield. [Pg.80]

Some interesting modifications with respect to the base-induced isomerization have recently been developed. For example, conversion of 4-hydroxy-l-thiophenyl-2-alkynes 299 into the corresponding 4-hydroxy-substituted thiophenylallenes 300 was achieved by treatment with potassium hexamethyldisilazide at low temperature (Scheme 8.79) [165], If the hydroxyl group is protected as the THP ether an elimination reaction occurred, resulting in the formation of an enyne instead of allene 300. [Pg.475]

In solution, lithium hexamethyldisilazide (LiHMDS) is a strong enough base to deprotonate esters, ketones, and alcohols, with a pK of about 27 in DMSO solvent. In the gas phase, the bare anion is too weak to deprotonate methanethiol, much less the ketones, esters, and comparable carbon acids. The change in relative anionic basicity is on the order of 14 kcal/mol. [Pg.211]

Page et al. (see [298] and references therein) have shown that generally excellent stereocontrol in organic reactions can be obtained by using DITOX (1,3-dithiane-l-oxide) derivatives as chiral auxiliaries. The one-pot stereo-controlled cycloalkanone synthesis given here outlines some aspects of the chemistry worked out for efficient acylation-alkylations steps. Of note are the use of N-acyl imidazoles under mixed base (sodium hexamethyldisilazide/n-butyllithium) conditions to yield the lithium enolates of 2-acyl-l,3-dithiane-l-oxides) and the sequential alkylation-cyclization of the latter (steps (iv) and (v)). [Pg.48]

KHMDS (potassium hexamethyldisilazide) is a strong non-nucleophilic base. [Pg.8]

Silyl enolates generated from a-allyloxy ketones undergo the [2,3]-Wittig rearrangement in the presence of a catalytic Lewis base such as lithium 2-pyrrolidone, lithium acetamide, or lithium hexamethyldisilazide (Scheme ll).15... [Pg.435]

Eliminations of epoxides lead to allyl alcohols. For this reaction to take place, the strongly basic bulky lithium dialkylamides LDA (lithium diisopropylamide), LTMP (lithium tetramethylpiperidide) or LiHMDS (lithium hexamethyldisilazide) shown in Figure 4.18 are used. As for the amidine bases shown in Figure 4.17, the hulkiness of these amides guarantees that they are nonnucleophilic. They react, for example, with epoxides in chemoselective E2 reactions even when the epoxide contains a primary C atom that easily reacts with nucleophiles (see, e.g., Figure 4.18). [Pg.171]

Lactams may be alkylated at the a-position by reaction with a strong base, such as LDA or hexamethyldisilazide, followed by treatment with an alkyl halide. Baldwin and coworkers have used this methodology in their synthesis of unnatural amino acids from protected pyroglutamates (equation 81)563. The same reaction has been used for alkylating 5- to 9-membered lactams564. It is noteworthy that a-alkylated 7- to 9-membered lactams are... [Pg.734]

The most widely used method for the preparation of free NHCs is the deprotonation of an azohum salt with NaH or KOBuf [10,14,37]. In the case of N,N -methylene-bridgcd bisimidazolium salts, the preparation of the free dicarbenes is only possible by the use of potassium hexamethyldisilazide (KHMDS) in toluene [14,41]. Other strong bases deprotonate the methylene bridge breaking the bisazol unit [42],... [Pg.90]

This asymmetric induction is strongly affected by the base. Asymmetric methylation of 32 occurred with retention of configuration when lithium 2,2,6,6-tetramethylpiperidide (LTMP) or LDA was used, while inversion of configuration was observed with potassium hexamethyldisilazide (KHMDS)... [Pg.185]

The dibenzo derivative of a cyclic acetylenic silane 96 was synthesized by mono-deprotonation of 1,2-diethynyl-benzene with 1 equiv of lithium hexamethyldisilazide (LiHMDS) followed by treatment with 0.5equiv of dichlor-odiphenylsilane (formation of 95). A repeat of the deprotonation step, followed by silylation cycle, gave 96 in 77% yield after column chromatography (Scheme 19). One-step preparation of 96 using 2 equiv of base and 2 equiv of the silylation agent also yielded the desired product, however, the yield was 50% of those of the previous method... [Pg.991]

Methyl ethers are usually prepared by some variant of the Williamson ether synthesis in which an alcohol reacts with either iodomethane, dimethyl sulfate, or methyl triflate (HAZARD) in the presence of a suitable base. A word of caution dimethyl sulfate and methyl triflate, tike all powerful alkylating agents, are potentially carcinogenic and therefore should only be handled in a well-ventilated fume hood. For the 0-methylation of phenols (pKa 10) a comparatively weak base such as potassium carbonate in conjunction with dimethyl sulfate is sufficient,193 whereas simple aliphatic alcohols require stronger bases such as sodium hydride [Scheme 4.111]22 or lithium hexamethyldisilazide [Scheme 4.112].203 The latter transformation is notable for the fact that 0-methyiation was accomplished without competing elimination. [Pg.241]

Only one equivalent of base is required for the trifluoroacetylation step apparently the chelated tetrahedral intermediate is stable at -78°C and the ft-dicarbonyl product is not generated until workup. Crucial to the success of the trifluoroacetylation reaction in some cases is the selection of lithium hexamethyldisilazide (LiHMDS) for the generation of the ketone enolate under otherwise identical conditions diazo transfer to several aryl ketones proceeds in dramatically reduced yield when lithium diisopropylamide is employed as base. [Pg.139]

Z)-OL, -Unsaturated esters,l Wittig-Homer reactions generally show a preference for formation of (E)-alkenes. Thus (E)-a,p-unsaturated esters are obtained preferentially on reaction of aldehydes with trimethyl phosphonoacetate under usual conditions (potassium f-butoxide). Use of a highly dissociated base can favor (Z)-selectivity. The most effective base for this purpose is potassium hexamethyldisilazide, KN[Si(CH3)3]2, in combination with 18-crown-6, although even potassium carbonate with the crown ether is fairly effective. The (Z)-selectivity can be further enhanced by use of 1 as the phos-phonoester. Under these conditions, (Z)-unsaturated esters can be prepared from aliphatic and aromatic aldehydes with Z/E ratios as high as 50 1. The method is also useful for transformation of unsaturated aldehydes to (E,Z)-dienoates and (E,E,Z)-trienoates. [Pg.320]

Enolate hydroxylation (cf. 11, 108).2 Enolates of ketones or esters are oxidized by this oxaziridine to a-hydroxy carbonyl compounds. Yields are highly dependent on the base they are highest with potassium hexamethyldisilazide. Yields are generally higher than those obtained with the Vedejs reagent (MoOPH, 8, 207). [Pg.392]

The term amidolithium is the unambiguous name for the compounds RR NLi (R, R = alkyl, aryl, silyl, etc.) more often termed lithium amides. They derive their importance from the near-ubiquity of their bulkier members lithium diisopropy-lamide (LDA), lithium tetramethylpiperidide (LTMP), and lithium hexamethyldisilazide (LHMDS) in organic synthesis. Using such powerful but nonnucleophilic bases, many useful reactions may be performed, notably the enolization of ketones and esters, which can proceed both regio- and stereoselectively under kinetic control at low temperatures. ... [Pg.77]


See other pages where Bases hexamethyldisilazide is mentioned: [Pg.31]    [Pg.370]    [Pg.615]    [Pg.31]    [Pg.370]    [Pg.615]    [Pg.101]    [Pg.31]    [Pg.21]    [Pg.211]    [Pg.73]    [Pg.358]    [Pg.160]    [Pg.918]    [Pg.919]    [Pg.326]    [Pg.155]    [Pg.271]    [Pg.8]    [Pg.99]    [Pg.462]    [Pg.356]    [Pg.102]    [Pg.501]    [Pg.281]    [Pg.162]    [Pg.5654]   
See also in sourсe #XX -- [ Pg.322 , Pg.323 , Pg.324 ]




SEARCH



Hexamethyldisilazide

Hexamethyldisilazides

© 2024 chempedia.info