Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aziridines azomethine ylides

Azomethine ylides are also frequently obtained by ring opening of aziridines, and the analogous carbonyl ylides from oxiranes. These aspects are dealt with in Section 3.03.5.1. A variety of five-membered heterocycles can also function as masked 1,3-dipoles and this aspect is considered in Section 3.03.5.2. [Pg.135]

Azomethine ylides (Section 4.03.6.1.1) have been generated from a wide variety of aziridines using both thermal and photochemical methods. With carbon-carbon unsaturated dipolarophiles, pyrrolines or pyrrolidines are obtained. With hetero double bonds, however, ring systems of interest to this discussion result. [Pg.154]

The high reactivity of azomethine ylides allows addition to aromatic systems (71TL481). For example, trans-aziridine (30) adds to phenanthrene to give the fran5-phenanthropyr-rolidine (31). The reversal of expected stereochemistry is again attributed to azomethine ylide interconversion being allowed by the low reactivity of the aromatic system. [Pg.54]

Aroylaziridines (32) and aromatic aldehydes react to give oxazolidines (33), the stereochemistry of which suggests reaction very largely through the trans-azomethine ylide, irrespective of the aziridine configuration (70JCS(C)2383). [Pg.54]

Aziridines, e.g. (91), undergo thermal ring opening in a conrotatory manner to generate azomethine ylides. These azomethine ylides are 47r-components and can participate in [4 + 2] cycloadditions with 1-azirines acting as the 27r-component 73HCA1351). [Pg.60]

There are at least two mechanisms available for aziridine cis-trans isomerism. The first is base-catalyzed and proceeds via an intermediate carbanion (235). The second mechanism can be either thermally or photochemically initiated and proceeds by way of an intermediate azomethine ylide. The absence of a catalytic effect and interception of the 1,3-dipole intermediate provide support for this route. A variety of aziridinyl ketones have been found to undergo equilibration when subjected to base-catalyzed conditions (65JA1050). In most of these cases the cis isomer is more stable than the trans. Base-catalyzed isotope exchange has also been observed in at least one molecule which lacks a stabilizing carbonyl group (72TL3591). [Pg.72]

Equilibration of aziridines via azomethine ylides has been reported for a variety of structures (67JA1753). Most aziridines equilibrated by this method show greater cis stability. An energy barrier has been detected between the two isomeric azomethine ylides (69AG(E)602>. [Pg.72]

Synthetic work commenced with evaluation of an azomethine ylide dipole for the proposed intramolecular dipolar cycloaddition. A number of methods exist for the preparation of azomethine ylides, including, inter alia, transformations based on fluoride-mediated desilylation of a-silyliminium species, electrocyclic ring opening of aziridines, and tautomerization of a-amino acid ester imines [37]. In particular, the fluoride-mediated desilylation of a-silyliminium species, first reported by Vedejs in 1979 [38], is among the most widely used methods for the generation of non-stabilized azomethine ylides (Scheme 1.6). [Pg.9]

The 1,3-dipolar cycloaddition reactions to unsaturated carbon-carbon bonds have been known for quite some time and have become an important part of strategies for organic synthesis of many compounds (Smith and March, 2007). The 1,3-dipolar compounds that participate in this reaction include many of those that can be drawn having charged resonance hybrid structures, such as azides, diazoalkanes, nitriles, azomethine ylides, and aziridines, among others. The heterocyclic ring structures formed as the result of this reaction typically are triazoline, triazole, or pyrrolidine derivatives. In all cases, the product is a 5-membered heterocycle that contains components of both reactants and occurs with a reduction in the total bond unsaturation. In addition, this type of cycloaddition reaction can be done using carbon-carbon double bonds or triple bonds (alkynes). [Pg.680]

Microwave irradiation in solvent-free conditions induces the cleavage of the 2,3-bond of 2-aroyl-aziridines 135 to give an azomethine ylide intermediate, which subsequently undergoes cycloadditions to a multiple bond and leads to oxazolidine, imidazoline, naphthooxazole and pyrroline derivatives 136 in good yields (Scheme 9.41) [32b], Reactions were performed at atmospheric pressure in an Erlenmeyer flask placed in a commercial domestic oven. The reactions were complete in 10-15 min while the conventional method requires 18-20 h. [Pg.319]

The intermolecular reaction of imines with acceptor-substituted carbene complexes generally leads to the formation of azomethine ylides. These can undergo several types of transformation, such as ring closure to aziridines [1242-1245], 1,3-dipolar cycloadditions [1133,1243,1246-1248], or different types of rearrangement (Figure 4.9). [Pg.202]

The formation of the A-vinylaziridine 70 in the photoreaction of 68 deserves additional comment. Depending on the multiplicity, the intermediate 72 formed by path b could be a triplet 1,3-biradical. However, if intersystem crossing occurs along the reaction coordinate, the singlet biradical must be considered as a dipolar azomethine ylide. According to literature precedents, both intermediates, the 1,3-biradical and the ylide, will cyclize to form the observed aziridine. This is the first case in a DPM process where a zwitterion can be postulated as a possible intermediate. [Pg.22]

In some cases 0-substituted oximes reacted with azomethine ylides. Thus, reaction of 0-substituted oxime (NC)2C=NOTs 139 with azomethine yhde derived from aziridine 140 afforded imidazoline 141 in 44% yield (equation 61). Addition of lithium derivative of silylated alkyne to oxime ethers 142 leads to 4-ethynyl-Af-hydroxy-2-imidazolines 143 in 49-72% yields (equation 62) . [Pg.254]

Pyrrolidine derivatives such as 206 have been synthesized by the addition of the corresponding azomethine ylide generated by the thermal ring opening of the aziridine 205 (or similar aziridines) as shown in Scheme 4.33 [204, 210-212],... [Pg.142]

In the examples presented in CHEC-II(1996) in which a pyridazin-3(2//)-one is the 1,3-dipolarophile, two types of 1,3-dipoles are used nitrile oxides and diazoalkanes. Two other 1,3-dipoles have to be mentioned now. The 1,3-dipolar cycloaddition of the azomethine ylide 95 generated in situ by thermal ring opening of dimethyl trans- -(A-methoxyphenyl)aziridine-2,3-dicarboxylate 94 to some 4- or 5-substituted 2-methylpyridazin-3(2//)-ones has been... [Pg.30]

In synthetic efforts toward the DNA reactive alkaloid naphthyridinomycin (164), Gamer and Ho (41) reported a series of studies into the constmction of the diazobicyclo[3.2.1]octane section. Constmction of the five-membered ring, by the photolytic conversion of an aziridine to an azomethine ylide and subsequent alkene 1,3-dipolar cycloaddition, was deemed the best synthetic tactic. Initial studies with menthol- and isonorborneol- tethered chiral dipolarophiles gave no facial selectivity in the adducts formed (42). However, utilizing Oppolzer s sultam as the chiral controlling unit led to a dramatic improvement. Treatment of ylide precursor 165 with the chiral dipolarophile 166 under photochemical conditions led to formation of the desired cycloadducts (Scheme 3.47). The reaction proceeded with an exo/endo ratio of only 2.4 1 however, the facial selectivity was good at >25 1 in favor of the desired re products. The products derived from si attack of the ylide... [Pg.199]

As previously described, thermolysis of aziridines is one of the standard methods for the generation of azomethine ylides. A diastereomeric mixture of the aziridines 199 possessing an enantiomerically pure N-substituent underwent ylide formation at 280 °C and subsequent cycloaddition to vinylidine carbonate to form a mixture of four separable compounds (d-200, l-201, d-202, l-203) in a 3 3 1 1 ratio (55). Subsequent LiAlH4 reduction and hydrogenolytic N-benzyl cleavage led to all... [Pg.207]

The chiral dipolarophiles of Garners and Dogan, which were derived from Oppolzer s sultam, have been previously discussed in Section 3.2.1 and, in an extension to these results, the sultam moiety was used as the stereodirecting unit in enantiopure azomethine ylides (56). The ylides were generated either by thermo-lytic opening of N-substituted aziridines or by the condensation of the amine functionality with benzaldehyde followed by tautomerism. These precursors were derived from the known (+)-A-propenoylbornane-2,10-sultam. Subsequent trapping of the ylides with A-phenylmaleimide furnished the cycloaddition products shown in Schemes 3.60 and 3.61. [Pg.208]

The thermolytic preparation by De Shong et al. (74) of azomethine ylides from aziridines and their intermolecular reactions are the first examples of singly stabilized ylides of this type. However, the protocol has been further extended to include intramolecular processes. Aziridines tethered to both activated and unactivated alkenes were subjected to flash vacuum thermolysis generating cycloadducts in moderate-to-excellent yields. While previously singly activated alkenes had furnished low material yields via an intermolecular process, the intramolecular analogue represents a major improvement. Typically, treatment of 222 under standard conditions led to the formation of 223 in 80% yield as a single cis isomer. Similarly, the cis precursor furnished adduct 224 in 52% yield, although as a 1 1 diastereomeric mixture (Scheme 3.77). [Pg.219]

At about the same time, Wenkert and c-workers (75) reported a similar smdy into the intramolecular 1,3-dipolar cycloaddition of 2-alkenoyl-aziridine derived azomethine ylides. Thermolysis of 231 at moderate temperature (85 °C) produced 232 as a single isomer in 58% yield. Similarly, 233 furnished 234 in 67% yield. In each case, the same stereoisomers were produced regardless of the initial stereochemistry of the initial aziridine precursors. However, the reaction proved to be sensitive to both the substituents of the aziridine and tether length, as aziridines 235 and 236 furnished no cycloadducts, even at 200 °C (Scheme 3.79). [Pg.220]

During the synthetic efforts of Heathcock and co-workers toward the complex marine alkaloid sarain-A (Scheme 3.80), he outlined an elegant intramolecular, azomethine ylide cycloaddition, as one of the key stages in the construction of the central core (76). Of the generation methods known for azomethine ylides, thermolysis of aziridines was selected in this instance. The azomethine ylide... [Pg.220]

In a similar approach, Garner et al. (78) made use of silicon-based tethers between ylide and dipolarophile during their program of research into the application of azomethine ylides in the total asymmetric synthesis of complex natural products. In order to form advanced synthetic intermediates of type 248 during the asymmetric synthesis of bioxalomycins (249), an intramolecular azomethine ylide reaction from aziridine ylide precursors was deemed the best strategy (Scheme 3.84). Under photochemically induced ylide formation and subsequent cycloaddition, the desired endo-re products 250 were formed exclusively. However, due to unacceptably low synthetic yields, this approach was abandoned in favor of a longer tether (Scheme 3.85). [Pg.223]

Whereas the thermal ring-opening reaction of oxrranes and aziridines is frequently used for generation of carbonyl ylides and azomethine ylides, the analogous procedure starting with thiiranes does not produce the expected thiocarbonyl ylides (8). However, in the case of tetraaryl-substituted thiiranes, the photolytically mediated reaction with tetracyanoethylene (TCNE) is believed to occur via a single electron transfer (SET) mechanism, also involving a thiocarbonyl ylide as a likely intermediate (75,76) (Scheme 5.14). [Pg.324]


See other pages where Aziridines azomethine ylides is mentioned: [Pg.529]    [Pg.76]    [Pg.529]    [Pg.76]    [Pg.138]    [Pg.154]    [Pg.53]    [Pg.53]    [Pg.54]    [Pg.55]    [Pg.91]    [Pg.531]    [Pg.213]    [Pg.27]    [Pg.87]    [Pg.142]    [Pg.87]    [Pg.71]    [Pg.26]    [Pg.514]    [Pg.481]    [Pg.298]    [Pg.216]    [Pg.225]    [Pg.637]    [Pg.658]    [Pg.757]   


SEARCH



Aziridine azomethine ylides from

Aziridines azomethine ylide generation

Aziridines azomethine ylides from

Aziridines azomethines

Azomethine ylides aziridine precursors

Azomethine ylides generation from aziridines

Azomethine ylides, cycloaddition with aziridines

Azomethine ylides, cycloaddition with substituted aziridines

Reactions of Azomethine Ylides Derived from Aziridines

© 2024 chempedia.info