Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylides azomethine, intramolecular

A novel application of phosphate-stabilized ylides in intramolecular reactions has been reported by Martin and Cheavens (87). Thus, condensation of aldehydes of the type 293 with the amine 294 furnished the intermediate azomethine ylide, which then underwent a cycloaddition process, leading to pyrrolidines 295, where... [Pg.231]

While virtually all of the research described above has focused on the inter-molecular cycloaddition of azomethine ylides, the intramolecular process holds considerable promise for the synthesis of polycyclic natural products. The Pfaltz group reported an intramolecular catalytic asymmetric cyclization of aryl iminoesters 112 using a complex of silver acetate with PHOX type ligand 100 (Scheme 2.29,... [Pg.63]

Oxazoles have also been used to generate azomethine ylides in intramolecular [3+2] cycloadditions with alkynes <2000JA5401 1 he nucleophilic attack of cyanide ion on the oxazolinium salt 75 led to the formation of azomethine... [Pg.500]

The Rh(II)-catalyzed reaction of pyridone 96 with DMAD was also found to give cycloadducts derived from an intermediate azomethine ylide. The initial reaction involves generation of the expected carbonyl ylide by intramolecular cyclization of the keto carbenoid onto the oxygen atom of the amide group. A subsequent proton shift generates the thermodynamically more stable azomethine ylide, which is trapped by DMAD. This is an example of subsequent formation of ylides of two types, a phenomenon termed a dipole cascade (93JOC1144). [Pg.114]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

An intramolecular azomethine ylide-mediated cyclization has been used to access the core 5 6 5 angular tricyclic structure of martinellic acid by Snider (Equation 113) <20010L4217>. Reaction of IV-benzylglycine 420 with the aldehyde 419 led to intramolecular cyclization, giving 421 in good yield. [Pg.757]

Synthetic work commenced with evaluation of an azomethine ylide dipole for the proposed intramolecular dipolar cycloaddition. A number of methods exist for the preparation of azomethine ylides, including, inter alia, transformations based on fluoride-mediated desilylation of a-silyliminium species, electrocyclic ring opening of aziridines, and tautomerization of a-amino acid ester imines [37]. In particular, the fluoride-mediated desilylation of a-silyliminium species, first reported by Vedejs in 1979 [38], is among the most widely used methods for the generation of non-stabilized azomethine ylides (Scheme 1.6). [Pg.9]

The feasibility of azomethine ylide generation from 7 and intramolecular dipolar cycloaddition was examined under a variety of conditions. For example, activation of vinylogous amide 71 with BzOTf [41] followed by desilylation with TBAT led to complex mixtures of products. Likewise, using MeOTf as the activating agent yielded similar results. Significantly, none of these protocols furnished the desired pyrrolidine 73. Only decomposition of the silylpyridinone to form unidentified products was observed, despite the fact that quantitative O-methylation of the... [Pg.10]

Hynninen and coworkers <99JCS(PT1)2403> used a similar approach to prepare phytochlorin-C6o diad 38 (Scheme 11). The protocol employed the pyrolysis of the natural chlorophyll a molecule 35, followed by transesterification and demetallation to furnish derivative 36. Subsequent oxidation of 36 with OsCU and NaI04 has allowed the synthesis of the formyl derivative 37, which was further used as precursor of the azomethinic ylide intermediate in the 1,3-DC reaction with Cm leading to the formation of diad 38. Photochemical studies revealed that this diad underwent a fast intramolecular photoinduced electron transfer in polar solvents such a benzonitrile <99JACS9378>. [Pg.53]

Scheme 6.186 Intramolecular azomethine ylide-alkene/alkyne [3+2] cycloadditions. Scheme 6.186 Intramolecular azomethine ylide-alkene/alkyne [3+2] cycloadditions.
Highly stereoselective intramolecular cycloadditions of unsaturated N-substituted azomethine ylides have been conducted under microwave irradiation. Oritani reported that a mixture of the aldehyde 137 and N-methyl- or N-benzylglycine ethyl ester (138) on the surface of silica gel, irradiated under microwaves for 15 min, generated azomethine ylides 139 that subsequently underwent in situ intramolecular cycloadditions to afford the corresponding tricyclic compounds 140 in 79 and 81% yield, respectively (Scheme 9.42) [93],... [Pg.319]

The photocycloaddition of aliphatic and aromatic aldehydes with 2,4,5-trimethyloxazole (131) gave bicyclic oxetanes 132 in almost quantitative yields hydrolitic cleavage led selectively to erytro a-amino-P-hydroxy methyl ketones 133 <00CC589>. The oxazolium salt 134 was converted to the azomethine ylide 136 via electrocyclic ring opening of the oxazoline 135. Intramolecular cycloaddition afforded 137 in 66% overall yield which was transformed into the aziridinomitosene derivative 138 . [Pg.226]

A 1,3-dipolar cycloaddition of the nonstabilized azomethine ylide 6 is the key step in a three-component reaction. The azomethine ylides were generated from (2-azaallyl)stannanes or (2-azaallyl)silanes 5 through an intramolecular iV-alkylation/demetallation cascade. The ylides underwent cycloaddition reactions with dipolarophiles yielding indolizidine derivatives 7-9 <2004JOC1919> (Scheme 1). [Pg.370]

The scope of these reactions has not yet been thoroughly investigated. The examples listed in Table 4.17 suggest that azomethine ylides generated by intramolecular, carbene-mediated N-alkylation of imines enable convergent and fast... [Pg.202]

In a related paper, Scheldt and co-workers described a stereoselective formal [3 + 3] cycloaddition catalyzed by imidazolinylidine catalyst 256 Eq. 25 [130]. Ultimately this is an intermolecular addition of the homoenolate intermediate to an azomethine ylide followed by intramolecular acylation and presumably follows the same mechanistic path as described previously. Pyridazinones are obtained as single diastereomers in good to high yield from a number of aldehydes. Unfortunately no reaction occurs with the presence of electron-withdrawing groups on the aryl ring of the enal. [Pg.123]

The addition to alkenes normally leads to unstable adducts that lose carbon dioxide under the reaction conditions. The intramolecular cycloaddition of the sydnone (30) takes place at room temperature, however (Equation (5)) and the cycloadduct (31) has been characterized <86HCA927>. The unstable species formed by the loss of carbon dioxide are also azomethine ylides. It is therefore possible for a second 1,3-dipolar addition to take place, as illustrated in Scheme 6 for the reaction of 3-phenylsydnone with Al-phenylmaleimide <86TL317,92JA8414>. This 2 1 addition has been used as the basis of a synthesis of polyimides. Imides of the type (32) were used as the dipolarophiles and their reaction with 3-phenylsydnone gave linear polymers <87MM726>. [Pg.173]

Azomethine ylide generation from oxazolidines has also been achieved by flash vacuum thermolysis (20,21). During synthetic efforts toward alkaloid central skeletal cores, Joucla and co-workers (22) revealed that flash vacuum thermolysis of oxazolidine (84) led to an intramolecular [3 + 2] cycloaddition furnishing pyrrolidine 85 in 82% as a single regio- and stereoisomer. Subsequent Dieckmann... [Pg.183]

The proposed reaction pathway invokes initial formation of carbonyl ylide 100 by intramolecular cyclization of the intermediate keto carbenoid onto the oxygen atom of the amide. Subsequent isomerization to the azomethine ylide is followed by 1,3-dipolar cycloaddition to DMAD to furnish the intermediate cycloadduct 101, which undergoes in situ alkoxy 1,3-shift to the final drhydropyrrolizine 102 (Scheme 3.28). [Pg.186]

In this section, those reactions in which the ylide is attached by a tether to the dipolaraphile resulting in an intramolecular cycloaddition will be discussed. To date, such a strategy has proved to be one of the less investigated aspects of azomethine ylide chemistry. However, intramolecular azomethine ylide technology, when combined with the excellent stereocontrol offered by cycloaddition reactions, allows for the rapid construction of complex polycyclic systems from relatively simple precursors. Consequently, it represents a highly attractive synthetic protocol that makes it a candidate for further investigation in the coming years. [Pg.219]

The thermolytic preparation by De Shong et al. (74) of azomethine ylides from aziridines and their intermolecular reactions are the first examples of singly stabilized ylides of this type. However, the protocol has been further extended to include intramolecular processes. Aziridines tethered to both activated and unactivated alkenes were subjected to flash vacuum thermolysis generating cycloadducts in moderate-to-excellent yields. While previously singly activated alkenes had furnished low material yields via an intermolecular process, the intramolecular analogue represents a major improvement. Typically, treatment of 222 under standard conditions led to the formation of 223 in 80% yield as a single cis isomer. Similarly, the cis precursor furnished adduct 224 in 52% yield, although as a 1 1 diastereomeric mixture (Scheme 3.77). [Pg.219]

At about the same time, Wenkert and c-workers (75) reported a similar smdy into the intramolecular 1,3-dipolar cycloaddition of 2-alkenoyl-aziridine derived azomethine ylides. Thermolysis of 231 at moderate temperature (85 °C) produced 232 as a single isomer in 58% yield. Similarly, 233 furnished 234 in 67% yield. In each case, the same stereoisomers were produced regardless of the initial stereochemistry of the initial aziridine precursors. However, the reaction proved to be sensitive to both the substituents of the aziridine and tether length, as aziridines 235 and 236 furnished no cycloadducts, even at 200 °C (Scheme 3.79). [Pg.220]

During the synthetic efforts of Heathcock and co-workers toward the complex marine alkaloid sarain-A (Scheme 3.80), he outlined an elegant intramolecular, azomethine ylide cycloaddition, as one of the key stages in the construction of the central core (76). Of the generation methods known for azomethine ylides, thermolysis of aziridines was selected in this instance. The azomethine ylide... [Pg.220]

In a similar approach, Garner et al. (78) made use of silicon-based tethers between ylide and dipolarophile during their program of research into the application of azomethine ylides in the total asymmetric synthesis of complex natural products. In order to form advanced synthetic intermediates of type 248 during the asymmetric synthesis of bioxalomycins (249), an intramolecular azomethine ylide reaction from aziridine ylide precursors was deemed the best strategy (Scheme 3.84). Under photochemically induced ylide formation and subsequent cycloaddition, the desired endo-re products 250 were formed exclusively. However, due to unacceptably low synthetic yields, this approach was abandoned in favor of a longer tether (Scheme 3.85). [Pg.223]

In an extensive study into the application of the decarboxylative approach to azomethine ylides, Giigg reported the construction of numerous, complex polycyclic systems via an intramolecular protocol. Thiazolidine-4-carboxylic acid (263) was shown to react with 264 in refluxing toluene to furnish a 2 1 mixture of 265 and 266 in 63% yield (81). The reaction is assumed to occur via condensation of the aldehyde and amino acid to generate the imine 267, followed by cyclization to 268. Subsequent thermal decarboxylation of the ester generates either a syn dipole leading to 265 from an exo transition state, or an anti dipole and endo transition state generating adduct 266 (Scheme 3.90). [Pg.228]

Harwood and Lilley (87) reported the tandem generation and intramolecular trapping of a stabilized azomethine ylide, derived from the enantiopure template examined in detail in Section 3.2.3. Condensation of 5-hexenal with template 205 under standard conditions led to in situ ylide generation and subsequent cycloaddition of the tethered alkene to furnish 296 as a single enantiomer in 95% yield after purification and this despite the fact that the dipolarophile is unactivated. Hydro-genolytic destruction of the template revealed the bicyclic amino acid 297 in 75% yield (Scheme 3.97). [Pg.233]


See other pages where Ylides azomethine, intramolecular is mentioned: [Pg.1150]    [Pg.836]    [Pg.1088]    [Pg.274]    [Pg.274]    [Pg.356]    [Pg.103]    [Pg.138]    [Pg.259]    [Pg.801]    [Pg.10]    [Pg.11]    [Pg.152]    [Pg.73]    [Pg.203]    [Pg.62]    [Pg.225]   


SEARCH



© 2024 chempedia.info