Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azomethine ylides aziridine precursors

In synthetic efforts toward the DNA reactive alkaloid naphthyridinomycin (164), Gamer and Ho (41) reported a series of studies into the constmction of the diazobicyclo[3.2.1]octane section. Constmction of the five-membered ring, by the photolytic conversion of an aziridine to an azomethine ylide and subsequent alkene 1,3-dipolar cycloaddition, was deemed the best synthetic tactic. Initial studies with menthol- and isonorborneol- tethered chiral dipolarophiles gave no facial selectivity in the adducts formed (42). However, utilizing Oppolzer s sultam as the chiral controlling unit led to a dramatic improvement. Treatment of ylide precursor 165 with the chiral dipolarophile 166 under photochemical conditions led to formation of the desired cycloadducts (Scheme 3.47). The reaction proceeded with an exo/endo ratio of only 2.4 1 however, the facial selectivity was good at >25 1 in favor of the desired re products. The products derived from si attack of the ylide... [Pg.199]

The chiral dipolarophiles of Garners and Dogan, which were derived from Oppolzer s sultam, have been previously discussed in Section 3.2.1 and, in an extension to these results, the sultam moiety was used as the stereodirecting unit in enantiopure azomethine ylides (56). The ylides were generated either by thermo-lytic opening of N-substituted aziridines or by the condensation of the amine functionality with benzaldehyde followed by tautomerism. These precursors were derived from the known (+)-A-propenoylbornane-2,10-sultam. Subsequent trapping of the ylides with A-phenylmaleimide furnished the cycloaddition products shown in Schemes 3.60 and 3.61. [Pg.208]

The thermolytic preparation by De Shong et al. (74) of azomethine ylides from aziridines and their intermolecular reactions are the first examples of singly stabilized ylides of this type. However, the protocol has been further extended to include intramolecular processes. Aziridines tethered to both activated and unactivated alkenes were subjected to flash vacuum thermolysis generating cycloadducts in moderate-to-excellent yields. While previously singly activated alkenes had furnished low material yields via an intermolecular process, the intramolecular analogue represents a major improvement. Typically, treatment of 222 under standard conditions led to the formation of 223 in 80% yield as a single cis isomer. Similarly, the cis precursor furnished adduct 224 in 52% yield, although as a 1 1 diastereomeric mixture (Scheme 3.77). [Pg.219]

At about the same time, Wenkert and c-workers (75) reported a similar smdy into the intramolecular 1,3-dipolar cycloaddition of 2-alkenoyl-aziridine derived azomethine ylides. Thermolysis of 231 at moderate temperature (85 °C) produced 232 as a single isomer in 58% yield. Similarly, 233 furnished 234 in 67% yield. In each case, the same stereoisomers were produced regardless of the initial stereochemistry of the initial aziridine precursors. However, the reaction proved to be sensitive to both the substituents of the aziridine and tether length, as aziridines 235 and 236 furnished no cycloadducts, even at 200 °C (Scheme 3.79). [Pg.220]

In a similar approach, Garner et al. (78) made use of silicon-based tethers between ylide and dipolarophile during their program of research into the application of azomethine ylides in the total asymmetric synthesis of complex natural products. In order to form advanced synthetic intermediates of type 248 during the asymmetric synthesis of bioxalomycins (249), an intramolecular azomethine ylide reaction from aziridine ylide precursors was deemed the best strategy (Scheme 3.84). Under photochemically induced ylide formation and subsequent cycloaddition, the desired endo-re products 250 were formed exclusively. However, due to unacceptably low synthetic yields, this approach was abandoned in favor of a longer tether (Scheme 3.85). [Pg.223]

Chiral aziridines having the chiral moiety attached to the nitrogen atom have also been applied for diastereoselective formation of optically active pyrrolidine derivatives. In the first example, aziridines were used as precursors for azomethine ylides (90-95). Photolysis of the aziridine 57 produced the azomethine ylide 58, which was found to add smoothly to methyl acrylate (Scheme 12.20) (91,93-95). The 1,3-dipolar cycloaddition proceeded with little or no de, but this was not surprising, as the chiral center in 58 is somewhat remote from the reacting centers... [Pg.831]

Garner et al. (90,320) used aziridines substituted with Oppolzer s sultam as azomethine ylide precursors. The azomethine ylide generated from 206 added to various electron-dehcient alkenes, such as dimethyl maleate, A-phenylmalei-mide, and methyl acrylate, giving the 1,3-dipolar cycloaddition product in good yields and up to 82% de (for A-phenylmaleimide). They also used familiar azomethine ylides formed by imine tautomerization (320). Aziridines such as 207 have also been used as precursors for the chiral azomethine ylides, but in reactions with vinylene carbonates, relatively low de values were obtained (Scheme 12.59) (92). [Pg.860]

This methodology yields various heterocyclic compounds in reactions using internal perfluoroolefins or systems with conjugated multiple bonds as precursors. Hopefully, this approach will find wide use and new information will permit more profound generalizations. On thermolysis or photolysis aziridines are converted into azomethine ylides, reacting with perfluoro olefins (for example, hexafluoropropylene and perfluorobut-2-ene) to give pyrrole derivatives (autoclave, 160 °C) (76CJC218). [Pg.180]

An intramolecular allyl silane/N-sulfonyl iminium ion cyclization has also been used as a pivotal step in an approach to the tricyclic core of the unique marine alkaloid sarain A [46]. The starting material was aziridine ester 129 (Scheme 25) which was elaborated to amide 130. An important step in the synthetic strategy was thermolysis of 130 to an azomethine ylide, which underwent stereospecific intramolecular 1,3-dipolar cycloaddition with the Z-alkene to produce bicyclic lactam 131 [47]. This compound was then elaborated into allyl silane 132. It was then possible to replace the lactam N-benzyl functionality with a tosyl moiety, leading to 133, and subsequent reduction of the carbonyl group afforded the desired cyclization precursor a-hydroxy sulfonamide 134. Exposure of 134 to ferric chloride promoted cyclization to a single stereoisomeric tricyclic amino alkene 136 having the requisite sarain A nucleus. It is believed that the intermediate N-sulfonyl iminium ion cyclizes via the conformation shown in 135. [Pg.154]

Chiral Aziridines as Precursors for Azomethine Ylides Type of Aziridine... [Pg.137]


See other pages where Azomethine ylides aziridine precursors is mentioned: [Pg.91]    [Pg.171]    [Pg.91]    [Pg.91]    [Pg.139]    [Pg.297]    [Pg.1308]    [Pg.91]    [Pg.93]    [Pg.297]    [Pg.28]    [Pg.37]    [Pg.37]   
See also in sourсe #XX -- [ Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 ]

See also in sourсe #XX -- [ Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 ]




SEARCH



Aziridines azomethine ylides

Aziridines azomethines

© 2024 chempedia.info