Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Axial characterization

We designate the length of the ellipsoid along the axis of rotation as 2a and the equatorial diameter as 2b to define the axial ratio a/b which characterizes the ellipticity of the particle. By this definition, a/b > 1 corresponds to prolate ellipsoids, and a/b < 1 to oblate ellipsoids. [Pg.595]

We shall see in Sec. 9.10 that sedimentation and diffusion data yield experimental friction factors which may also be described-by the ratio of the experimental f to fQ, the friction factor of a sphere of the same mass-as contours in solvation-ellipticity plots. The two different kinds of contours differ in detailed shape, as illustrated in Fig. 9.4b, so the location at which they cross provides the desired characterization. For the hypothetical system shown in Fig. 9.4b, the axial ratio is about 2.5 and the protein is hydrated to the extent of about 1.0 g water (g polymer)". ... [Pg.597]

Protein molecules extracted from Escherichia coli ribosomes were examined by viscosity, sedimentation, and diffusion experiments for characterization with respect to molecular weight, hydration, and ellipticity. These dataf are examined in this and the following problem. Use Fig. 9.4a to estimate the axial ratio of the molecules, assuming a solvation of 0.26 g water (g protein)"V At 20°C, [r ] = 27.7 cm g" and P2 = 1.36 for aqueous solutions of this polymer. [Pg.655]

A summary of peak pressure and mean bulk temperatures in the various fixtures is shown in Table 6.3. Included in the characterization is the peak pressure along the axial few millimeter region along the axis of the samples (called focus) for which the radial focusing produces a high pressure region for a period of about 100 ns. [Pg.159]

An X-ray structure of the complex formed between 3-cinnamoyl-l,3-oxazohdin-2-one and a chiral TADDOL-Ti(IV) complex (see Chapters 1 and 6 by Hayashi and Gothelf, respectively) has been characterized [16]. The structure of this complex has the chiral TADDOLate and cinnamoyloxazohdinone ligands coordinated to titanium in the equatorial plane and the two chloride ligands in the axial plane and is similar to A in Fig. 8.8. The chiral discrimination was proposed to be due to... [Pg.310]

PET fibers in final form are semi-crystalline polymeric objects of an axial orientation of structural elements, characterized by the rotational symmetry of their location in relation to the geometrical axis of the fiber. The semi-crystalline character manifests itself in the occurrence of three qualitatively different polymeric phases crystalline phase, intermediate phase (the so-called mes-ophase), and amorphous phase. When considering the fine structure, attention should be paid to its three fundamental aspects morphological structure, in other words, super- or suprastructure microstructure and preferred orientation. [Pg.839]

The quantity of flow is defined as the amount of fluid that moves axially or radially away from the impeller at the surface or periphery of rotation. This flow quantity is never actually measured, but its relative relation to head characterizes the particular system. The flow rate, Q, is usually available from the manufacturer for a given impeller [21]. [Pg.298]

Dunn et al. (D7) measured axial dispersion in the gas phase in the system referred to in Section V,A,4, using helium as tracer. The data were correlated reasonably well by the random-walk model, and reproducibility was good, characterized by a mean deviation of 10%. The degree of axial mixing increases with both gas flow rate (from 300 to 1100 lb/ft2-hr) and liquid flow rate (from 0 to 11,000 lb/ft2-hr), the following empirical correlations being proposed ... [Pg.93]

Glaser and Lichtenstein (G3) measured the liquid residence-time distribution for cocurrent downward flow of gas and liquid in columns of -in., 2-in., and 1-ft diameter packed with porous or nonporous -pg-in. or -in. cylindrical packings. The fluid media were an aqueous calcium chloride solution and air in one series of experiments and kerosene and hydrogen in another. Pulses of radioactive tracer (carbon-12, phosphorous-32, or rubi-dium-86) were injected outside the column, and the effluent concentration measured by Geiger counter. Axial dispersion was characterized by variability (defined as the standard deviation of residence time divided by the average residence time), and corrections for end effects were included in the analysis. The experiments indicate no effect of bed diameter upon variability. For a packed bed of porous particles, variability was found to consist of three components (1) Variability due to bulk flow through the bed... [Pg.98]

Tadaki and Maeda (Tl) examined the desorption of carbon dioxide from water in a bubble-column and analyzed the experimental results under the assumption that while the gas phase moves in piston flow, the liquid undergoes axial mixing that can be characterized by the diffusion model. (Shulman and Molstad, in contrast, assumed piston flow for both phases.) Only poor agreement was obtained between the theoretical model and the experimental... [Pg.112]

The model of non-correlated potential fluctuations is of special interest. First, it can be solved analytically, second, the assumption that subsequent values of orienting field are non-correlated is less constrained from the physical point of view. The theory allows for consideration of a rather general orienting field. When the spherical shape of the cell is distorted and its symmetry becomes axial, the anisotropic potential is characterized by the only given axis e. However, all the spherical harmonics built on this vector contribute to its expansion, not only the term of lowest order... [Pg.241]

The effect of axial conduction on heat transfer in the fluid in the micro-channel can be characterized by a dimensionless parameter... [Pg.169]

The problem of axial conduction in the wall was considered by Petukhov (1967). The parameter used to characterize the effect of axial conduction is P = (l - dyd k2/k ). The numerical calculations performed for q = const, and neglecting the wall thermal resistance in radial direction, showed that axial thermal conduction in the wall does not affect the Nusselt number Nuco. Davis and Gill (1970) considered the problem of axial conduction in the wall with reference to laminar flow between parallel plates with finite conductivity. It was found that the Peclet number, the ratio of thickness of the plates to their length are important dimensionless groups that determine the process of heat transfer. [Pg.171]

The continuous polystyrene process which was commercialized successfully in 1952 (2) is illustrated schematically in Fig. 16. It is characterized by three vertical elongated reactors in series, the contents of which are gently agitated by slowly revolving rods mounted on an axial shaft. Temperature control is provided by horizontal banks of cooling tubes between adjacent agitator rods. Such a reactor, called a "stratifier-... [Pg.98]

Klein showed that axial reaction of the parent methylenecyclohexane 37 is preferred in hydroboration [106], The experimental data on the parent methylenecyclohexanone 37a accumulated by Senda et al. [107] and the more recent systematic studies by Cieplak et al. [108, 109] on jr-facial selectivities of 3-substituted methylene-cyclohexanes 37 have characterized the intrinsic features of the facial selection of methylenecyclohexanes. That is, axial preference of unsubstituted and 3-substituted methylenecyclohexanes was observed in oxymercuration [107] and epoxidation reactions [110], There is also an increase in the proportion of axial attack with increase in the electronegativity of the remote 3-equatorial... [Pg.145]

The characteristic derivative-shaped feature at g 1.94 first observed in mitochondrial membranes has long been considered as the sole EPR fingerprint of iron-sulfur centers. The EPR spectrum exhibited by [4Fe-4S] centers generally reflects a ground state with S = I and is characterized by g values and a spectral shape similar to those displayed by [2Fe-2S] centers (Fig. 6c). Proteins containing [4Fe-4S] centers, which are sometimes called HIPIP, essentially act as electron carriers in the photoinduced cyclic electron transfer of purple bacteria (106), although they have also been discovered in nonphotosynthetic bacteria (107). Their EPR spectrum exhibits an axial shape that varies little from one protein to another with g// 2.11-2.14 and gi 2.03-2.04 (106-108), plus extra features indicative of some heterogeneous characteristics (Pig. 6d). [Pg.443]

The Preparation and Characterization of Organocobalt(III) Complexes of the General Formula [RCo" (L )X] where L4 is the equatorial ligand (Corrin, etc.) and X is the unidentate axial ligand (.S,6-dimethylbenzimidazole, HjO or absent, where L is corrin otherwise as stated in the table). [Pg.362]

In this paper, TiCU was oxidized in the flow reactor at various temperature and gas flow rate. The wall scales were characterized by scan electron microscopy and X-ray diffraction. The effects of reactor wall surface state, radial growth of scale layer and reactor axial temperature distribution on scaling formation were discussed. At the same time, the mechanism of scaling on the reactor wall was explored furthermore. [Pg.417]

After gas-phase oxidation reaction finished, the reactor wall surfece was coated with a thick rough scale layer. The thickness of scale layer along axial direction was varied. The scale layer at front reactor was much thicker than that at rear. The SEM pictures were shown in Fig. 1 were scale layers stripped from the reactor wall surface. Fig. 1(a) was a cross sectional profile of scale layer collected from major scaling zone. Seen from right side of scale layer, particles-packed was loose and this side was attached to the wall surface. Its positive face was shown in Fig. 1(b). Seen from left side of scale layer, compact particles-sintered was tight and this side was faced to the reacting gases. Its local amplified top face was shown in Fig. 1(c). The XRD patterns were shown in Fig. 2(a) were the two sides of scale layer. Almost entire particles on sintered layer were characterized to be rutile phase. While, the particle packed layer was anatase phase. [Pg.418]

CPOs are best characterized by the following three features 1) axial coordination to the incorporated metals, 2) specific nano-sized space created by rigid porphyrin panels, and 3) specific (photo-induced) redox reactions associated with the porphyrin s rr-electron system. In this chapter, some examples are reviewed based on these properties. [Pg.81]

The conformational analysis was developped recently by different authors first on the disaccharide units to investigate the role of the charge on C-6 position on the conformation [29-32]. From this study, the 2i or right-handed 3i helices were described as most problable conformations [30,31]. These conformations were also demonstrated from x-ray diffraction [33] or on the basis of circular dichroTsm [34], From these data, the repeat unit in the axial-axial conformation has a 4.3 A° length which will be used to characterize the electrostatic properties. [Pg.24]

Since the modified iterative method is completely numerical, data can be used directly from the monodisperse chromatograms to characterize the axial dispersion, eliminating the need for a specific axial dispersion function. The monodisperse standards were used to represent the spreading behavior for particle ranges as given in reference (27). [Pg.19]

Calibration refers to characterizing the residence time in the GPC as a function of molecular weight. Axial dispersion refers to the chromatogram being a spread curve even for a monodisperse sample. A polydisperse sample then is the result of a series of overlapping, unseen, spread curves. [Pg.151]

One possibility is that although averages for polystyrene standards require correction, those for PMMA would not According to symmetrical axial dispersion theory (5) the correction depends upon both the slope of the calibration curve (different for each polymer type) and the variance of the chromatogram of a truly monodisperse sample. Furthermore, the calibration curve to be utilized can be obtained from a broad standard as well as from monodisperse samples. The broad standard method may itself incorporate some axial dispersion correction depending upon how the standard was characterized. [Pg.151]

The effect could be elucidated by ad tional axial dispersion characterization of GPC 1. An alternate approach is to utilize only THF in botii GPC 1 and 2 and to observe whether slices exit at the expected hydrodynamic volume. [Pg.177]

Axial dispersion characterization is a valuable by-product of coupling GPCs. By sampling chromatograms with the second GPC, extremely monodisperse fractions can be obtained and the concentration of misplaced molecules in any chromatogram slice revealed. [Pg.180]


See other pages where Axial characterization is mentioned: [Pg.149]    [Pg.184]    [Pg.187]    [Pg.598]    [Pg.441]    [Pg.425]    [Pg.1652]    [Pg.2070]    [Pg.618]    [Pg.499]    [Pg.778]    [Pg.179]    [Pg.202]    [Pg.92]    [Pg.98]    [Pg.154]    [Pg.34]    [Pg.15]    [Pg.38]    [Pg.122]    [Pg.78]    [Pg.260]    [Pg.272]    [Pg.417]   
See also in sourсe #XX -- [ Pg.180 ]




SEARCH



Dispersion characterization, axial

© 2024 chempedia.info