Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ether autoxidation

The aromatic core or framework of many aromatic compounds is relatively resistant to alkylperoxy radicals and inert under the usual autoxidation conditions (2). Consequentiy, even somewhat exotic aromatic acids are resistant to further oxidation this makes it possible to consider alkylaromatic LPO as a selective means of producing fine chemicals (206). Such products may include multifimctional aromatic acids, acids with fused rings, acids with rings linked by carbon—carbon bonds, or through ether, carbonyl, or other linkages (279—287). The products may even be phenoUc if the phenoUc hydroxyl is first esterified (288,289). [Pg.344]

Hydroperoxides have been obtained from the autoxidation of alkanes, aralkanes, alkenes, ketones, enols, hydrazones, aromatic amines, amides, ethers, acetals, alcohols, and organomineral compounds, eg, Grignard reagents (10,45). In autoxidations involving hydrazones, double-bond migration occurs with the formation of hydroperoxy—azo compounds via free-radical chain processes (10,59) (eq. 20). [Pg.105]

AlkoxyaLkyl hydroperoxides are more commonly called ether hydroperoxides. They form readily by the autoxidation of most ethers containing a-hydrogens, eg, dioxane, tetrahydrofuran, diethyl ether, diisopropyl ether, di- -butyl ether, and diisoamyl ether (10,44). From certain ethers, eg, diethyl ether (in the following, R = H R = 35 — CH2CH2), the initially formed ether hydroperoxide can yield alcohol on standing, or with acid treatment... [Pg.113]

Low molecular weight ether hydroperoxides are similarly dangerous and therefore ethers should be tested for peroxides and any peroxidic products removed from them before ethers are distilled or evaporated to dryness. Many ethers autoxidize so readily that peroxidic compounds form at dangerous levels when stored in containers that are not airtight (133). Used ether containers should be handled cautiously and if they are found to contain hazardous soHd ether peroxides, bomb-squad assisted disposal may be required (134). ZeoHtes have been used for removal of peroxide impurities from ethers (135). [Pg.113]

Peroxides. These are formed by aerial oxidation or by autoxidation of a wide range of organic compounds, including diethyl ether, allyl ethyl ether, allyl phenyl ether, dibenzyl ether, benzyl butyl ether, n-butyl ether, iso-butyl ether, r-butyl ether, dioxane, tetrahydrofuran, olefins, and aromatic and saturated aliphatic hydrocarbons. They accumulate during distillation and can detonate violently on evaporation or distillation when their concentration becomes high. If peroxides are likely to be present materials should be tested for peroxides before distillation (for tests see entry under "Ethers", in Chapter 2). Also, distillation should be discontinued when at least one quarter of the residue is left in the distilling flask. [Pg.5]

Common impurities found in aldehydes are the corresponding alcohols, aldols and water from selfcondensation, and the corresponding acids formed by autoxidation. Acids can be removed by shaking with aqueous 10% sodium bicarbonate solution. The organic liquid is then washed with water. It is dried with anhydrous sodium sulfate or magnesium sulfate and then fractionally distilled. Water soluble aldehydes must be dissolved in a suitable solvent such as diethyl ether before being washed in this way. Further purification can be effected via the bisulfite derivative (see pp. 57 and 59) or the Schiff base formed with aniline or benzidine. Solid aldehydes can be dissolved in diethyl ether and purified as above. Alternatively, they can be steam distilled, then sublimed and crystallised from toluene or petroleum ether. [Pg.63]

Similarly, the a position in ethers is autoxidized quite readily to give a-hydroperoxy ethers. [Pg.708]

The Apomorphine-derived alkaloid PO-3 (129) was isolated as violet needles after crystallization from acetone and ether from Papaver orientale (66MI2), but was not found in the green solutions of autoxidized apomorhine hydrochloride (62M941, 68HCA683) (Scheme 51). No anion was detected by elemental analysis. The pA"a of PO-3 is 3.88 0.02 in 50% ethanol. The IR spectrum displays no carbonyl absorption between 1650 and 1700 cm (69MI2). The UV absorption maxima of PO-3 are in agreement with the formulation of a mesomeric betaine [T-max (EtOH) = 310... [Pg.113]

It should be pointed out that not all benzoin derivatives (75) are suitable for use as photoinitialors. Benzoin esters (75, R=aeyl) undergo a side reaction leading to furan derivatives. Aryl ethers (75, R=aryl) undergo (3-seission to give a phenoxy radical (an inhibitor) in competition with a-scission (Scheme 3.54). Benzoin derivatives with a-hydrogens (75 R-Il) are readily autoxidized and consequently can have poor shelf lives. [Pg.100]

Autoxidation of dimethylketene with oxygen in ether at —20°C gives the poly (peroxylactone) which as a dry solid is liable to undergo unpredictable and violent detonation. [Pg.523]

Dasler, W. et al., Ind. Eng. Chem. (Anal. Ed.), 1946,18, 52 Like other monofunctional ethers but more so because of the four susceptible hydrogen atoms, dioxane exposed to air is susceptible to autoxidation with formation of peroxides which may be hazardous if distillation (causing concentration) is attempted. Because it is water-miscible, treatment by shaking with aqueous reducants (iron(II) sulfate, sodium sulfide, etc.) is impracticable. Peroxides may be removed, however, under anhydrous conditions by passing dioxane (or any other ether) down a column of activated alumina. The peroxides (and any water) are removed by adsorption onto the alumina, which must then be washed with methanol or water to remove them before the column material is discarded [1], The heat of decomposition of dioxane has been determined (130-200°C) as 0.165 kJ/g. [Pg.544]

The autoxidation of ethers occurs with self-acceleration as autoxidation of hydrocarbons. The kinetics of such reactions was discussed earlier (see Chapter 2). The autoacceleration of ether oxidation occurs by the initiating activity of the formed hydroperoxide. The rate constants of initiation formed by hydroperoxides were estimated from the parabolic kinetic... [Pg.311]

The slow spontaneous oxidation of compounds in the presence of oxygen is termed autoxidation (autooxidation). This radical process is responsible for a variety of transformations, such as the drying of paints and varnishes, the development of rancidity in foodstuff fats and oils, the perishing of rabber, air oxidation of aldehydes to acids, and the formation of peroxides in ethers. [Pg.333]

There is ample evidence in the literature for conversion of reactive hydrocarbons to carbonyl compounds by autoxidation. In coals, the final products of autoxidation under the conditions used in the present study could be a mixture of carbonyl and carboxylic acid surface groups. Under mild oxidation conditions, a different set of functional groups such as ethers as proposed by Liotta et al. or epoxides as suggested in Scheme V could be formed. There are numerous examples of alkoxy radicals rearranging to epoxides . Choi and Stock have shown that ethers can be produced from benzhydrol structures, which are invoked as intermediates in Scheme IV. At higher temperatures, the epoxides and ethers are unstable and may rearrange to carbonyl compounds. [Pg.310]

The relations above seem to apply to ethers (31, 32, 33) as well as hydrocarbons. Oxidations of alcohols (33) and a few hydrocarbons (22) utilize as chain carriers HOo radicals which have high termination constants. We are now investigating the behavior of some alcohols, ketones, and esters in autoxidations. [Pg.69]


See other pages where Ether autoxidation is mentioned: [Pg.314]    [Pg.315]    [Pg.314]    [Pg.315]    [Pg.210]    [Pg.271]    [Pg.55]    [Pg.105]    [Pg.920]    [Pg.450]    [Pg.207]    [Pg.282]    [Pg.218]    [Pg.329]    [Pg.541]    [Pg.564]    [Pg.78]    [Pg.489]    [Pg.219]    [Pg.220]    [Pg.137]    [Pg.329]    [Pg.159]    [Pg.310]    [Pg.178]    [Pg.259]    [Pg.260]    [Pg.19]    [Pg.206]    [Pg.379]    [Pg.310]   
See also in sourсe #XX -- [ Pg.329 ]

See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Autoxidation of ethers

Diethyl ether autoxidation

© 2024 chempedia.info