Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attractive forces induced interactions

Adsorbates can physisorb onto a surface into a shallow potential well, typically 0.25 eV or less [25]. In physisorption, or physical adsorption, the electronic structure of the system is barely perturbed by the interaction, and the physisorbed species are held onto a surface by weak van der Waals forces. This attractive force is due to charge fiuctuations in the surface and adsorbed molecules, such as mutually induced dipole moments. Because of the weak nature of this interaction, the equilibrium distance at which physisorbed molecules reside above a surface is relatively large, of the order of 3 A or so. Physisorbed species can be induced to remain adsorbed for a long period of time if the sample temperature is held sufficiently low. Thus, most studies of physisorption are carried out with the sample cooled by liquid nitrogen or helium. [Pg.294]

V n der W ls Interactions. Van der Waals iateractions result from the asymmetric distribution of electronic charge surrounding an atom, which induces a complementary dipole in a neighboring atom, resulting in an attractive force. In general, the attractive force of van der Waals interactions is very weak (<4.2 kJ/mol (1 kcal/mol)) but may become significant if steric complementarity creates an opportunity to form a large number of van der Waals attractions. [Pg.196]

Both attractive forces and repulsive forces are included in van der Waals interactions. The attractive forces are due primarily to instantaneous dipole-induced dipole interactions that arise because of fluctuations in the electron charge distributions of adjacent nonbonded atoms. Individual van der Waals interactions are weak ones (with stabilization energies of 4.0 to 1.2 kj/mol), but many such interactions occur in a typical protein, and, by sheer force of numbers, they can represent a significant contribution to the stability of a protein. Peter Privalov and George Makhatadze have shown that, for pancreatic ribonuclease A, hen egg white lysozyme, horse heart cytochrome c, and sperm whale myoglobin, van der Waals interactions between tightly packed groups in the interior of the protein are a major contribution to protein stability. [Pg.160]

Attractive forces arise from dipole interaction, a result of the fluctuations in the cloud of counterions. Although the mean distribution of counterions is uniform along the length of the polyion, there are fluctuations in the cloud of counterions which induce transient dipoles. When two polyions approach each other counterion fluctuations become coupled and enhance the attractive force. Since polyions have a high polarizability these attractive forces can be considerable. [Pg.82]

Attractive or repulsive forces between molecular entities or groups within the same molecular entity (i.e., both intermolecular and intramolecular) not due to bond formation or to electrostatic interactions of ions or ionic groups with one another or with neutral molecules. The origin of van der Waals forces is in electric polarization of uncharged atoms, groups, or molecules and includes dipole-dipole interactions, dipole-induced dipole interactions, and London forces (induced dipole-induced dipole interactions). [Pg.696]

Two later sections (1.6.5 and 1.6.6) look at the crystalline structures of covalently bonded species. First, extended covalent arrays are investigated, such as the structure of diamond—one of the forms of elemental carbon—where each atom forms strong covalent bonds to the surrounding atoms, forming an infinite three-dimensional network of localized bonds throughout the crystal. Second, we look at molecular crystals, which are formed from small, individual, covalently-bonded molecules. These molecules are held together in the crystal by weak forces known collectively as van der Waals forces. These forces arise due to interactions between dipole moments in the molecules. Molecules that possess a permanent dipole can interact with one another (dipole-dipole interaction) and with ions (charge-dipole interaction). Molecules that do not possess a dipole also interact with each other because transient dipoles arise due to the movement of electrons, and these in turn induce dipoles in adjacent molecules. The net result is a weak attractive force known as the London dispersion force, which falls off very quickly with distance. [Pg.35]

Van der Waals forces are very complex and manifest themselves even at distances at which it is unreasonable to assume that orbital interactions can occur. An explanation due to London in terms of the mutual attraction of induced dipoles (dispersion forces) accounts for the long-range behavior. The unoccupied-occupied orbital interactions will be the dominant component of van der Waals forces at short range. See Kauzmann, W., Quantum Chemistry, Academic, New York, 1957, Chapter 13, for a discussion of dispersion forces. [Pg.315]

Ideally, it would be desirable to be able to develop quantitative expressions for the interaction energies so that we can deal with coagulation or flocculation, at least in the case of fairly dilute dispersions, the way we did in Sections 13.3-13.4 for electrostatic stabilization. It is possible to develop approximate expressions for interaction energy due to various individual effects such as osmotic repulsion, attraction or repulsion due to the overlap of the tails of the adsorbed (or grafted) polymer layers, interaction of the loops in the layers, and so on (see Fig. 13.15). However, the complicated nature of polymer-induced interactions makes these tasks very difficult. In this section, we merely illustrate some of the issues that need to be considered in developing a fundamental quantitative understanding of polymer-induced forces. In Section... [Pg.611]

The intermolecular forces of adhesion and cohesion can be loosely classified into three categories quantum mechanical forces, pure electrostatic forces, and polarization forces. Quantum mechanical forces give rise both to covalent bonding and to the exchange interactions that balance tile attractive forces when matter is compressed to the point where outer electron orbits interpenetrate. Pure electrostatic interactions include Coulomb forces between charged ions, permanent dipoles, and quadrupoles. Polarization forces arise from the dipole moments induced in atoms and molecules by the electric fields of nearby charges and other permanent and induced dipoles. [Pg.1435]

Van der Waals Forces. Van der Waals interactions are of two types one attractive and one repulsive. Attractive van der Waals forces involve interactions among induced dipoles that arise from fluctuations in the electron charge densities of neighboring nonbonded atoms. Such interactions amount to 0.1-0.2 kcal/mol despite their small size, the large number of such interactions that occur when molecules come close together makes such interactions quite significant. Van der Waals forces favor close packing in folded protein structures. [Pg.87]

Polarizability is a measure of the ease with which the electrons of a molecule are distorted. It is the basis for evaluating the nonspecific attraction forces (London dispersion forces) that arise when two molecules approach each other. Each molecule distorts the electron cloud of the other and thereby induces an instantaneous dipole. The induced dipoles then attract each other. Dispersion forces are weak and are most important for the nonpolar solvents where other solvation forces are absent. They do, nevertheless, become stronger the larger the electron cloud, and they may also become important for some of the higher-molecular-weight polar solvents. Large solute particles such as iodide ion interact by this mechanism more strongly than do small ones such as fluoride ion. Furthermore, solvent polarizability may influence rates of certain types of reactions because transition states may be of different polarizability from reactants and so be differently solvated. [Pg.88]


See other pages where Attractive forces induced interactions is mentioned: [Pg.159]    [Pg.398]    [Pg.4]    [Pg.101]    [Pg.649]    [Pg.712]    [Pg.94]    [Pg.168]    [Pg.52]    [Pg.251]    [Pg.490]    [Pg.25]    [Pg.78]    [Pg.238]    [Pg.170]    [Pg.663]    [Pg.39]    [Pg.361]    [Pg.149]    [Pg.397]    [Pg.296]    [Pg.40]    [Pg.64]    [Pg.3]    [Pg.244]    [Pg.155]    [Pg.73]    [Pg.101]    [Pg.122]    [Pg.11]    [Pg.186]    [Pg.118]    [Pg.40]    [Pg.162]    [Pg.184]    [Pg.11]    [Pg.919]    [Pg.146]    [Pg.147]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Attractive forces

Attractive forces interactions

Interaction attraction

Interaction force

Interaction-induced

Interactions attractive

© 2024 chempedia.info