Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atrazine derivatives

Analysis of Pesticides. Organophosphates, carbamates, atrazine derivatives, and other types of compounds are receiving expanded use in comparison to classical organochlorine pesticides. Many of these compounds are not amenable to GC analysis due to thermal instability or other factors. HPLC holds promise for analysis of such substances. HPLC procedures for selected pesticide analyses are presented in the following. [Pg.103]

Lancaster, C. R. D., and Michel, H., 1999, Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J. Mol. Biol., 286 883n898. [Pg.670]

The first SPR immunosensor for detection of pesticides was developed by Mimmni et al. [22] in the early 1990s. They used an SPR sensor developed by Biacore AB, Sweden, with the atrazine derivative bound to dextran matrix on the sensor chip. The detection of atrazine was performed using the inhibition assay and monoclonal antibodies. The sensor response was subsequently amplified by secondary antibody, which was bound to the antibody captured by the atrazine derivative (sandwich assay, see Chap. 7 in this volume [54]). This biosensor was demonstrated to measure atrazine in distilled and tap water within the range 0.05-1 ng mL in 15 min and exhibited relatively low crossreactivity with simazine and tetrabutyl atrazine (20%). The sensor surface was regenerated with 100 mM sodium hydroxide in 20% acetonitrile. [Pg.193]

Triazines. Triazine herbicides are one of several herbicide groups that are heterocycHc nitrogen derivatives. Triazine herbicides include the chloro-, methylthio-, and methoxytriazines. They are used for the selective pre-emergence control and early post-emergence control of seedling grass and broadleaved weeds in cropland (299). In addition, some of the triazines, particularly atrazine, prometon [1610-18-0] and simazine [122-34-9] are used for the nonselective control of vegetation in noncropland (2). Simazine may be used for selective control of aquatic weeds (2). [Pg.52]

Miscellaneous compounds such as biopesticides (for example. Bacillus thuringiensis and pherhormones), heterocycles (for example, atrazine), pyrethroids (for example, cypermethrin), and urea derivatives (for example, diuron). [Pg.71]

Atrazine, used as a selective pre- and post-emergence herbicide to control annual weeds in several crops, is the most representative compound of this group. It is also used as a non-selective herbicide in non-crop areas. After absorption, the compound is metabolized to dealkylated and deisopropy-lated derivatives. The unchanged compound and its metabolites are excreted in urine, where they can be detected by chromatography or enzyme-linked immunosorbent assay (Lucas et al., 1993). A mercapturic acid conjugate of atrazine has also been found in urine samples of workers spraying this herbicide (Lucas et al., 1993) (Table 6). [Pg.14]

Figure 17. Structure affinity relationship measurement using reflectometric interference spectroscopy of atrazine versus an antibody in water. A variety of derivatives of triazines are measured at a number of concentrations to obtain affinity constants. Figure 17. Structure affinity relationship measurement using reflectometric interference spectroscopy of atrazine versus an antibody in water. A variety of derivatives of triazines are measured at a number of concentrations to obtain affinity constants.
Lynch, T.R., H.E. Johnson, and W.J. Adams. 1982. The fate of atrazine and a hexachlorobiphenyl isomer in naturally-derived model stream ecosystems. Environ. Toxicol. Chem. 1 179-192. [Pg.800]

Schiavon, M. 1988a. Studies of the leaching of atrazine, of its chlorinated derivatives, and of hydroxyatrazine from soil using 14C ring-labeled compounds under outdoor conditions. Ecotoxicol. Environ. Safety 15 46-54. [Pg.801]

Chemical/Physical. The hydrolysis half-lives of atrazine in aqueous buffered solutions at 25 °C and pH values of 1, 2, 3, 4, 11, 12 and 13 were reported to be 3.3, 14, 58, 240, 100, 12.5, and 1.5 d, respectively (Armstrong et al., 1967). Atrazine does not hydrolyze in uncatalyzed solutions, even under elevated temperatures. The estimated half-life of atrazine in neutral, uncatalyzed water at pH 6.97 and 25 °C is 1,800 yr. Under acidic conditions, hydrolysis proceeds via mono- and diprotonated forms (Plust et al., 1981). Atrazine is stable in slightly acidic or basic media, but is hydrolyzed to hydroxy derivatives by alkalies and strong mineral acids (Windholz et al., 1983). Atrazine reacts with strong mineral acids forming hydroxyatrazine (Montgomery and Freed, 1964). [Pg.1553]

Dwell time, or the time the molecule was actually in the lamp unit, and concentration were two parameters that affected the rate of degradation. Mass spectra of the trimethylsilyl (TMS) derivatives of atrazine subjected to UV-ozonation revealed a number of dehalogenated, dealkylated s -triazines, paraquat yielded the 4-picolinic acid, and 2,4-D gave oxalic acid, glycolic acid and several four-carbon oxidation products. The economics of UV-ozonation as a pretreatment for land disposal compares favorably with incineration and other options open to the small pesticide user. [Pg.195]

SSDs are being routinely used for the display and interpretation of effects data (Parkhurst et al. 1996 Posthuma et al. 2002). An SSD for atrazine (shown in Figure 7.3) displays the typical S-shaped curve associated with many chemical dose-response relationships. Each point on the curve represents an LC50 for a particular species exposed to atrazine under standard toxicity test protocols. The SSD approach uses only a single statistically derived endpoint from each available toxicity test (e.g., the LC50 or EC50). In contrast, all data collected during any specific toxicity test can be used in a hierarchical model. The ability to use all available data to make inferential decisions is a marked improvement over the standard SSD effects distribution. [Pg.131]

The first work in this field was probably that of Piletsky et al. [84] that described a competitive FILA for the analysis of triazine using the fluorescent derivative 5-[(4,6-dichlorotriazin-2-yl)amino]fluorescein. The fluorescence of the supernatant after incubation was proportional to the triazine concentration and the assay was selective to triazine over atrazine and simazine. The same fluorescent triazine derivative was applied to competitive assays using atrazine-imprinted films [70]. To this end an oxidative polymerization was performed in the presence of the template, the monomer(s) 3-thiopheneboronic acid (TBA) or mixtures of 3-amino-phenylboronic acid (APBA) and TBA (10 1) in ethanol-water (1 1 v/v) where the template is more soluble. The polymers were grafted onto the surface of polystyrene microplates. The poly-TBA polymers yielded a detection limit of 8 pM atrazine whereas for the poly-TBA-APBA plates it was lowered to 0.7 pM after 5 h of incubation. However, a 10-20% decrease in the polymer affinity was observed after 2 months. [Pg.147]

In the first research reports on atrazine, McWhorter and Holstun (1961) found that in solution cultures used to provide maximum differentiation and the most rigorous test for selectivity of 29 triazine compounds, the chloro-derivatives were highly selective. These included atrazine, simazine, and propazine. [Pg.69]


See other pages where Atrazine derivatives is mentioned: [Pg.226]    [Pg.59]    [Pg.226]    [Pg.59]    [Pg.110]    [Pg.351]    [Pg.353]    [Pg.355]    [Pg.412]    [Pg.440]    [Pg.113]    [Pg.66]    [Pg.66]    [Pg.67]    [Pg.783]    [Pg.154]    [Pg.179]    [Pg.199]    [Pg.200]    [Pg.203]    [Pg.529]    [Pg.540]    [Pg.783]    [Pg.293]    [Pg.137]    [Pg.167]    [Pg.55]    [Pg.123]    [Pg.663]    [Pg.693]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Atrazin

Atrazine

© 2024 chempedia.info